MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcd Structured version   Visualization version   GIF version

Theorem genpcd 11030
Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcd.2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
Assertion
Ref Expression
genpcd ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpcd
StepHypRef Expression
1 ltrelnq 10950 . . . . . . 7 <Q ⊆ (Q × Q)
21brel 5743 . . . . . 6 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
32simpld 494 . . . . 5 (𝑥 <Q 𝑓𝑥Q)
4 genp.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
5 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelv 11024 . . . . . . . 8 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
76adantr 480 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
8 breq2 5152 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
98biimpd 228 . . . . . . . . . . . 12 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
10 genpcd.2 . . . . . . . . . . . 12 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
119, 10sylan9r 508 . . . . . . . . . . 11 (((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) ∧ 𝑓 = (𝑔𝐺)) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))
1211exp31 419 . . . . . . . . . 10 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1312an4s 659 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑔𝐴𝐵)) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1413impancom 451 . . . . . . . 8 (((𝐴P𝐵P) ∧ 𝑥Q) → ((𝑔𝐴𝐵) → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1514rexlimdvv 3207 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
167, 15sylbid 239 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
1716ex 412 . . . . 5 ((𝐴P𝐵P) → (𝑥Q → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
183, 17syl5 34 . . . 4 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1918com34 91 . . 3 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵)))))
2019pm2.43d 53 . 2 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵))))
2120com23 86 1 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2705  wrex 3067   class class class wbr 5148  (class class class)co 7420  cmpo 7422  Qcnq 10876   <Q cltq 10882  Pcnp 10883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-ni 10896  df-nq 10936  df-ltnq 10942  df-np 11005
This theorem is referenced by:  genpcl  11032
  Copyright terms: Public domain W3C validator