![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpcd | Structured version Visualization version GIF version |
Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
genpcd.2 | ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) |
Ref | Expression |
---|---|
genpcd | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 10995 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 5765 | . . . . . 6 ⊢ (𝑥 <Q 𝑓 → (𝑥 ∈ Q ∧ 𝑓 ∈ Q)) |
3 | 2 | simpld 494 | . . . . 5 ⊢ (𝑥 <Q 𝑓 → 𝑥 ∈ Q) |
4 | genp.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
5 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
6 | 4, 5 | genpelv 11069 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
8 | breq2 5170 | . . . . . . . . . . . . 13 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 ↔ 𝑥 <Q (𝑔𝐺ℎ))) | |
9 | 8 | biimpd 229 | . . . . . . . . . . . 12 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 <Q (𝑔𝐺ℎ))) |
10 | genpcd.2 | . . . . . . . . . . . 12 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) | |
11 | 9, 10 | sylan9r 508 | . . . . . . . . . . 11 ⊢ (((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) ∧ 𝑓 = (𝑔𝐺ℎ)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))) |
12 | 11 | exp31 419 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
13 | 12 | an4s 659 | . . . . . . . . 9 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵)) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
14 | 13 | impancom 451 | . . . . . . . 8 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
15 | 14 | rexlimdvv 3218 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
16 | 7, 15 | sylbid 240 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
17 | 16 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 ∈ Q → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
18 | 3, 17 | syl5 34 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
19 | 18 | com34 91 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵))))) |
20 | 19 | pm2.43d 53 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵)))) |
21 | 20 | com23 86 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 class class class wbr 5166 (class class class)co 7448 ∈ cmpo 7450 Qcnq 10921 <Q cltq 10927 Pcnp 10928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-ni 10941 df-nq 10981 df-ltnq 10987 df-np 11050 |
This theorem is referenced by: genpcl 11077 |
Copyright terms: Public domain | W3C validator |