MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcd Structured version   Visualization version   GIF version

Theorem genpcd 10949
Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcd.2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
Assertion
Ref Expression
genpcd ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpcd
StepHypRef Expression
1 ltrelnq 10869 . . . . . . 7 <Q ⊆ (Q × Q)
21brel 5702 . . . . . 6 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
32simpld 496 . . . . 5 (𝑥 <Q 𝑓𝑥Q)
4 genp.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
5 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelv 10943 . . . . . . . 8 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
76adantr 482 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
8 breq2 5114 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
98biimpd 228 . . . . . . . . . . . 12 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
10 genpcd.2 . . . . . . . . . . . 12 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
119, 10sylan9r 510 . . . . . . . . . . 11 (((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) ∧ 𝑓 = (𝑔𝐺)) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))
1211exp31 421 . . . . . . . . . 10 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1312an4s 659 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑔𝐴𝐵)) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1413impancom 453 . . . . . . . 8 (((𝐴P𝐵P) ∧ 𝑥Q) → ((𝑔𝐴𝐵) → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1514rexlimdvv 3205 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
167, 15sylbid 239 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
1716ex 414 . . . . 5 ((𝐴P𝐵P) → (𝑥Q → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
183, 17syl5 34 . . . 4 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1918com34 91 . . 3 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵)))))
2019pm2.43d 53 . 2 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵))))
2120com23 86 1 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2714  wrex 3074   class class class wbr 5110  (class class class)co 7362  cmpo 7364  Qcnq 10795   <Q cltq 10801  Pcnp 10802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-ni 10815  df-nq 10855  df-ltnq 10861  df-np 10924
This theorem is referenced by:  genpcl  10951
  Copyright terms: Public domain W3C validator