| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpcd | Structured version Visualization version GIF version | ||
| Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
| genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
| genpcd.2 | ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) |
| Ref | Expression |
|---|---|
| genpcd | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 10945 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
| 2 | 1 | brel 5724 | . . . . . 6 ⊢ (𝑥 <Q 𝑓 → (𝑥 ∈ Q ∧ 𝑓 ∈ Q)) |
| 3 | 2 | simpld 494 | . . . . 5 ⊢ (𝑥 <Q 𝑓 → 𝑥 ∈ Q) |
| 4 | genp.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
| 5 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
| 6 | 4, 5 | genpelv 11019 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
| 8 | breq2 5128 | . . . . . . . . . . . . 13 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 ↔ 𝑥 <Q (𝑔𝐺ℎ))) | |
| 9 | 8 | biimpd 229 | . . . . . . . . . . . 12 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 <Q (𝑔𝐺ℎ))) |
| 10 | genpcd.2 | . . . . . . . . . . . 12 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) | |
| 11 | 9, 10 | sylan9r 508 | . . . . . . . . . . 11 ⊢ (((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) ∧ 𝑓 = (𝑔𝐺ℎ)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))) |
| 12 | 11 | exp31 419 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
| 13 | 12 | an4s 660 | . . . . . . . . 9 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵)) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
| 14 | 13 | impancom 451 | . . . . . . . 8 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
| 15 | 14 | rexlimdvv 3201 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
| 16 | 7, 15 | sylbid 240 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
| 17 | 16 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 ∈ Q → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
| 18 | 3, 17 | syl5 34 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵))))) |
| 19 | 18 | com34 91 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵))))) |
| 20 | 19 | pm2.43d 53 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵)))) |
| 21 | 20 | com23 86 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 class class class wbr 5124 (class class class)co 7410 ∈ cmpo 7412 Qcnq 10871 <Q cltq 10877 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-ni 10891 df-nq 10931 df-ltnq 10937 df-np 11000 |
| This theorem is referenced by: genpcl 11027 |
| Copyright terms: Public domain | W3C validator |