MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexnq Structured version   Visualization version   GIF version

Theorem ltexnq 10371
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by NM, 24-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexnq (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10322 . . . 4 <Q ⊆ (Q × Q)
21brel 5589 . . 3 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
3 ordpinq 10339 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
4 elpqn 10321 . . . . . . . . 9 (𝐴Q𝐴 ∈ (N × N))
54adantr 483 . . . . . . . 8 ((𝐴Q𝐵Q) → 𝐴 ∈ (N × N))
6 xp1st 7695 . . . . . . . 8 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
75, 6syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (1st𝐴) ∈ N)
8 elpqn 10321 . . . . . . . . 9 (𝐵Q𝐵 ∈ (N × N))
98adantl 484 . . . . . . . 8 ((𝐴Q𝐵Q) → 𝐵 ∈ (N × N))
10 xp2nd 7696 . . . . . . . 8 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
119, 10syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (2nd𝐵) ∈ N)
12 mulclpi 10289 . . . . . . 7 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
137, 11, 12syl2anc 586 . . . . . 6 ((𝐴Q𝐵Q) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
14 xp1st 7695 . . . . . . . 8 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
159, 14syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (1st𝐵) ∈ N)
16 xp2nd 7696 . . . . . . . 8 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
175, 16syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (2nd𝐴) ∈ N)
18 mulclpi 10289 . . . . . . 7 (((1st𝐵) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
1915, 17, 18syl2anc 586 . . . . . 6 ((𝐴Q𝐵Q) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
20 ltexpi 10298 . . . . . 6 ((((1st𝐴) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐵) ·N (2nd𝐴)) ∈ N) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴))))
2113, 19, 20syl2anc 586 . . . . 5 ((𝐴Q𝐵Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴))))
22 relxp 5545 . . . . . . . . . . . 12 Rel (N × N)
234ad2antrr 724 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐴 ∈ (N × N))
24 1st2nd 7712 . . . . . . . . . . . 12 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2522, 23, 24sylancr 589 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2625oveq1d 7144 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩))
277adantr 483 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (1st𝐴) ∈ N)
2817adantr 483 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (2nd𝐴) ∈ N)
29 simpr 487 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝑦N)
30 mulclpi 10289 . . . . . . . . . . . . 13 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
3117, 11, 30syl2anc 586 . . . . . . . . . . . 12 ((𝐴Q𝐵Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
3231adantr 483 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
33 addpipq 10333 . . . . . . . . . . 11 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (𝑦N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
3427, 28, 29, 32, 33syl22anc 836 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
3526, 34eqtrd 2855 . . . . . . . . 9 (((𝐴Q𝐵Q) ∧ 𝑦N) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
36 oveq2 7137 . . . . . . . . . . . 12 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦)) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴))))
37 distrpi 10294 . . . . . . . . . . . . 13 ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦)) = (((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) +N ((2nd𝐴) ·N 𝑦))
38 fvex 6655 . . . . . . . . . . . . . . 15 (2nd𝐴) ∈ V
39 fvex 6655 . . . . . . . . . . . . . . 15 (1st𝐴) ∈ V
40 fvex 6655 . . . . . . . . . . . . . . 15 (2nd𝐵) ∈ V
41 mulcompi 10292 . . . . . . . . . . . . . . 15 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
42 mulasspi 10293 . . . . . . . . . . . . . . 15 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
4338, 39, 40, 41, 42caov12 7350 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) = ((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))
44 mulcompi 10292 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N 𝑦) = (𝑦 ·N (2nd𝐴))
4543, 44oveq12i 7141 . . . . . . . . . . . . 13 (((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) +N ((2nd𝐴) ·N 𝑦)) = (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴)))
4637, 45eqtr2i 2844 . . . . . . . . . . . 12 (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))) = ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦))
47 mulasspi 10293 . . . . . . . . . . . . 13 (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((2nd𝐴) ·N (1st𝐵)))
48 mulcompi 10292 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴))
4948oveq2i 7140 . . . . . . . . . . . . 13 ((2nd𝐴) ·N ((2nd𝐴) ·N (1st𝐵))) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴)))
5047, 49eqtri 2843 . . . . . . . . . . . 12 (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴)))
5136, 46, 503eqtr4g 2880 . . . . . . . . . . 11 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)))
52 mulasspi 10293 . . . . . . . . . . . . 13 (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) = ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))
5352eqcomi 2829 . . . . . . . . . . . 12 ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))
5453a1i 11 . . . . . . . . . . 11 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)))
5551, 54opeq12d 4783 . . . . . . . . . 10 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩ = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩)
5655eqeq2d 2831 . . . . . . . . 9 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩ ↔ (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
5735, 56syl5ibcom 247 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
58 fveq2 6642 . . . . . . . . 9 ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ → ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
59 adderpq 10352 . . . . . . . . . . 11 (([Q]‘𝐴) +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩))
60 nqerid 10329 . . . . . . . . . . . . 13 (𝐴Q → ([Q]‘𝐴) = 𝐴)
6160ad2antrr 724 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘𝐴) = 𝐴)
6261oveq1d 7144 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (([Q]‘𝐴) +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
6359, 62syl5eqr 2869 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
64 mulclpi 10289 . . . . . . . . . . . . . . . 16 (((2nd𝐴) ∈ N ∧ (2nd𝐴) ∈ N) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6517, 17, 64syl2anc 586 . . . . . . . . . . . . . . 15 ((𝐴Q𝐵Q) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6665adantr 483 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6715adantr 483 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (1st𝐵) ∈ N)
6811adantr 483 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (2nd𝐵) ∈ N)
69 mulcanenq 10356 . . . . . . . . . . . . . 14 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩)
7066, 67, 68, 69syl3anc 1367 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩)
718ad2antlr 725 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐵 ∈ (N × N))
72 1st2nd 7712 . . . . . . . . . . . . . 14 ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
7322, 71, 72sylancr 589 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
7470, 73breqtrrd 5066 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵)
75 mulclpi 10289 . . . . . . . . . . . . . . 15 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (1st𝐵) ∈ N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) ∈ N)
7666, 67, 75syl2anc 586 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) ∈ N)
77 mulclpi 10289 . . . . . . . . . . . . . . 15 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (2nd𝐵) ∈ N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) ∈ N)
7866, 68, 77syl2anc 586 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) ∈ N)
7976, 78opelxpd 5565 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ∈ (N × N))
80 nqereq 10331 . . . . . . . . . . . . 13 ((⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵 ↔ ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵)))
8179, 71, 80syl2anc 586 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → (⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵 ↔ ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵)))
8274, 81mpbid 234 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵))
83 nqerid 10329 . . . . . . . . . . . 12 (𝐵Q → ([Q]‘𝐵) = 𝐵)
8483ad2antlr 725 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘𝐵) = 𝐵)
8582, 84eqtrd 2855 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = 𝐵)
8663, 85eqeq12d 2836 . . . . . . . . 9 (((𝐴Q𝐵Q) ∧ 𝑦N) → (([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) ↔ (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
8758, 86syl5ib 246 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ → (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
8857, 87syld 47 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
89 fvex 6655 . . . . . . . 8 ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) ∈ V
90 oveq2 7137 . . . . . . . . 9 (𝑥 = ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) → (𝐴 +Q 𝑥) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
9190eqeq1d 2822 . . . . . . . 8 (𝑥 = ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) → ((𝐴 +Q 𝑥) = 𝐵 ↔ (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
9289, 91spcev 3583 . . . . . . 7 ((𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵)
9388, 92syl6 35 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
9493rexlimdva 3269 . . . . 5 ((𝐴Q𝐵Q) → (∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
9521, 94sylbid 242 . . . 4 ((𝐴Q𝐵Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
963, 95sylbid 242 . . 3 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
972, 96mpcom 38 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵)
98 eleq1 2898 . . . . . . 7 ((𝐴 +Q 𝑥) = 𝐵 → ((𝐴 +Q 𝑥) ∈ Q𝐵Q))
9998biimparc 482 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → (𝐴 +Q 𝑥) ∈ Q)
100 addnqf 10344 . . . . . . . 8 +Q :(Q × Q)⟶Q
101100fdmi 6496 . . . . . . 7 dom +Q = (Q × Q)
102 0nnq 10320 . . . . . . 7 ¬ ∅ ∈ Q
103101, 102ndmovrcl 7308 . . . . . 6 ((𝐴 +Q 𝑥) ∈ Q → (𝐴Q𝑥Q))
104 ltaddnq 10370 . . . . . 6 ((𝐴Q𝑥Q) → 𝐴 <Q (𝐴 +Q 𝑥))
10599, 103, 1043syl 18 . . . . 5 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑥))
106 simpr 487 . . . . 5 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → (𝐴 +Q 𝑥) = 𝐵)
107105, 106breqtrd 5064 . . . 4 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → 𝐴 <Q 𝐵)
108107ex 415 . . 3 (𝐵Q → ((𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
109108exlimdv 1934 . 2 (𝐵Q → (∃𝑥(𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
11097, 109impbid2 228 1 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3126  cop 4545   class class class wbr 5038   × cxp 5525  Rel wrel 5532  cfv 6327  (class class class)co 7129  1st c1st 7661  2nd c2nd 7662  Ncnpi 10240   +N cpli 10241   ·N cmi 10242   <N clti 10243   +pQ cplpq 10244   ~Q ceq 10247  Qcnq 10248  [Q]cerq 10250   +Q cplq 10251   <Q cltq 10254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-oadd 8080  df-omul 8081  df-er 8263  df-ni 10268  df-pli 10269  df-mi 10270  df-lti 10271  df-plpq 10304  df-mpq 10305  df-ltpq 10306  df-enq 10307  df-nq 10308  df-erq 10309  df-plq 10310  df-mq 10311  df-1nq 10312  df-ltnq 10314
This theorem is referenced by:  ltbtwnnq  10374  prnmadd  10393  ltexprlem4  10435  ltexprlem7  10438  prlem936  10443
  Copyright terms: Public domain W3C validator