MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexnq Structured version   Visualization version   GIF version

Theorem ltexnq 10050
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by NM, 24-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexnq (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10001 . . . 4 <Q ⊆ (Q × Q)
21brel 5336 . . 3 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
3 ordpinq 10018 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
4 elpqn 10000 . . . . . . . . 9 (𝐴Q𝐴 ∈ (N × N))
54adantr 472 . . . . . . . 8 ((𝐴Q𝐵Q) → 𝐴 ∈ (N × N))
6 xp1st 7398 . . . . . . . 8 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
75, 6syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (1st𝐴) ∈ N)
8 elpqn 10000 . . . . . . . . 9 (𝐵Q𝐵 ∈ (N × N))
98adantl 473 . . . . . . . 8 ((𝐴Q𝐵Q) → 𝐵 ∈ (N × N))
10 xp2nd 7399 . . . . . . . 8 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
119, 10syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (2nd𝐵) ∈ N)
12 mulclpi 9968 . . . . . . 7 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
137, 11, 12syl2anc 579 . . . . . 6 ((𝐴Q𝐵Q) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
14 xp1st 7398 . . . . . . . 8 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
159, 14syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (1st𝐵) ∈ N)
16 xp2nd 7399 . . . . . . . 8 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
175, 16syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (2nd𝐴) ∈ N)
18 mulclpi 9968 . . . . . . 7 (((1st𝐵) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
1915, 17, 18syl2anc 579 . . . . . 6 ((𝐴Q𝐵Q) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
20 ltexpi 9977 . . . . . 6 ((((1st𝐴) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐵) ·N (2nd𝐴)) ∈ N) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴))))
2113, 19, 20syl2anc 579 . . . . 5 ((𝐴Q𝐵Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴))))
22 relxp 5295 . . . . . . . . . . . 12 Rel (N × N)
234ad2antrr 717 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐴 ∈ (N × N))
24 1st2nd 7414 . . . . . . . . . . . 12 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2522, 23, 24sylancr 581 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2625oveq1d 6857 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩))
277adantr 472 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (1st𝐴) ∈ N)
2817adantr 472 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (2nd𝐴) ∈ N)
29 simpr 477 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝑦N)
30 mulclpi 9968 . . . . . . . . . . . . 13 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
3117, 11, 30syl2anc 579 . . . . . . . . . . . 12 ((𝐴Q𝐵Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
3231adantr 472 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
33 addpipq 10012 . . . . . . . . . . 11 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (𝑦N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
3427, 28, 29, 32, 33syl22anc 867 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
3526, 34eqtrd 2799 . . . . . . . . 9 (((𝐴Q𝐵Q) ∧ 𝑦N) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
36 oveq2 6850 . . . . . . . . . . . 12 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦)) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴))))
37 distrpi 9973 . . . . . . . . . . . . 13 ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦)) = (((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) +N ((2nd𝐴) ·N 𝑦))
38 fvex 6388 . . . . . . . . . . . . . . 15 (2nd𝐴) ∈ V
39 fvex 6388 . . . . . . . . . . . . . . 15 (1st𝐴) ∈ V
40 fvex 6388 . . . . . . . . . . . . . . 15 (2nd𝐵) ∈ V
41 mulcompi 9971 . . . . . . . . . . . . . . 15 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
42 mulasspi 9972 . . . . . . . . . . . . . . 15 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
4338, 39, 40, 41, 42caov12 7060 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) = ((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))
44 mulcompi 9971 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N 𝑦) = (𝑦 ·N (2nd𝐴))
4543, 44oveq12i 6854 . . . . . . . . . . . . 13 (((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) +N ((2nd𝐴) ·N 𝑦)) = (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴)))
4637, 45eqtr2i 2788 . . . . . . . . . . . 12 (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))) = ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦))
47 mulasspi 9972 . . . . . . . . . . . . 13 (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((2nd𝐴) ·N (1st𝐵)))
48 mulcompi 9971 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴))
4948oveq2i 6853 . . . . . . . . . . . . 13 ((2nd𝐴) ·N ((2nd𝐴) ·N (1st𝐵))) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴)))
5047, 49eqtri 2787 . . . . . . . . . . . 12 (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴)))
5136, 46, 503eqtr4g 2824 . . . . . . . . . . 11 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)))
52 mulasspi 9972 . . . . . . . . . . . . 13 (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) = ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))
5352eqcomi 2774 . . . . . . . . . . . 12 ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))
5453a1i 11 . . . . . . . . . . 11 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)))
5551, 54opeq12d 4567 . . . . . . . . . 10 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩ = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩)
5655eqeq2d 2775 . . . . . . . . 9 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩ ↔ (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
5735, 56syl5ibcom 236 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
58 fveq2 6375 . . . . . . . . 9 ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ → ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
59 adderpq 10031 . . . . . . . . . . 11 (([Q]‘𝐴) +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩))
60 nqerid 10008 . . . . . . . . . . . . 13 (𝐴Q → ([Q]‘𝐴) = 𝐴)
6160ad2antrr 717 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘𝐴) = 𝐴)
6261oveq1d 6857 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (([Q]‘𝐴) +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
6359, 62syl5eqr 2813 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
64 mulclpi 9968 . . . . . . . . . . . . . . . 16 (((2nd𝐴) ∈ N ∧ (2nd𝐴) ∈ N) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6517, 17, 64syl2anc 579 . . . . . . . . . . . . . . 15 ((𝐴Q𝐵Q) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6665adantr 472 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6715adantr 472 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (1st𝐵) ∈ N)
6811adantr 472 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (2nd𝐵) ∈ N)
69 mulcanenq 10035 . . . . . . . . . . . . . 14 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩)
7066, 67, 68, 69syl3anc 1490 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩)
718ad2antlr 718 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐵 ∈ (N × N))
72 1st2nd 7414 . . . . . . . . . . . . . 14 ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
7322, 71, 72sylancr 581 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
7470, 73breqtrrd 4837 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵)
75 mulclpi 9968 . . . . . . . . . . . . . . 15 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (1st𝐵) ∈ N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) ∈ N)
7666, 67, 75syl2anc 579 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) ∈ N)
77 mulclpi 9968 . . . . . . . . . . . . . . 15 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (2nd𝐵) ∈ N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) ∈ N)
7866, 68, 77syl2anc 579 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) ∈ N)
79 opelxpi 5314 . . . . . . . . . . . . . 14 (((((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) ∈ N ∧ (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) ∈ N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ∈ (N × N))
8076, 78, 79syl2anc 579 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ∈ (N × N))
81 nqereq 10010 . . . . . . . . . . . . 13 ((⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵 ↔ ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵)))
8280, 71, 81syl2anc 579 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → (⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵 ↔ ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵)))
8374, 82mpbid 223 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵))
84 nqerid 10008 . . . . . . . . . . . 12 (𝐵Q → ([Q]‘𝐵) = 𝐵)
8584ad2antlr 718 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘𝐵) = 𝐵)
8683, 85eqtrd 2799 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = 𝐵)
8763, 86eqeq12d 2780 . . . . . . . . 9 (((𝐴Q𝐵Q) ∧ 𝑦N) → (([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) ↔ (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
8858, 87syl5ib 235 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ → (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
8957, 88syld 47 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
90 fvex 6388 . . . . . . . 8 ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) ∈ V
91 oveq2 6850 . . . . . . . . 9 (𝑥 = ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) → (𝐴 +Q 𝑥) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
9291eqeq1d 2767 . . . . . . . 8 (𝑥 = ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) → ((𝐴 +Q 𝑥) = 𝐵 ↔ (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
9390, 92spcev 3452 . . . . . . 7 ((𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵)
9489, 93syl6 35 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
9594rexlimdva 3178 . . . . 5 ((𝐴Q𝐵Q) → (∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
9621, 95sylbid 231 . . . 4 ((𝐴Q𝐵Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
973, 96sylbid 231 . . 3 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
982, 97mpcom 38 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵)
99 eleq1 2832 . . . . . . 7 ((𝐴 +Q 𝑥) = 𝐵 → ((𝐴 +Q 𝑥) ∈ Q𝐵Q))
10099biimparc 471 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → (𝐴 +Q 𝑥) ∈ Q)
101 addnqf 10023 . . . . . . . 8 +Q :(Q × Q)⟶Q
102101fdmi 6233 . . . . . . 7 dom +Q = (Q × Q)
103 0nnq 9999 . . . . . . 7 ¬ ∅ ∈ Q
104102, 103ndmovrcl 7018 . . . . . 6 ((𝐴 +Q 𝑥) ∈ Q → (𝐴Q𝑥Q))
105 ltaddnq 10049 . . . . . 6 ((𝐴Q𝑥Q) → 𝐴 <Q (𝐴 +Q 𝑥))
106100, 104, 1053syl 18 . . . . 5 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑥))
107 simpr 477 . . . . 5 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → (𝐴 +Q 𝑥) = 𝐵)
108106, 107breqtrd 4835 . . . 4 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → 𝐴 <Q 𝐵)
109108ex 401 . . 3 (𝐵Q → ((𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
110109exlimdv 2028 . 2 (𝐵Q → (∃𝑥(𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
11198, 110impbid2 217 1 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wrex 3056  cop 4340   class class class wbr 4809   × cxp 5275  Rel wrel 5282  cfv 6068  (class class class)co 6842  1st c1st 7364  2nd c2nd 7365  Ncnpi 9919   +N cpli 9920   ·N cmi 9921   <N clti 9922   +pQ cplpq 9923   ~Q ceq 9926  Qcnq 9927  [Q]cerq 9929   +Q cplq 9930   <Q cltq 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-omul 7769  df-er 7947  df-ni 9947  df-pli 9948  df-mi 9949  df-lti 9950  df-plpq 9983  df-mpq 9984  df-ltpq 9985  df-enq 9986  df-nq 9987  df-erq 9988  df-plq 9989  df-mq 9990  df-1nq 9991  df-ltnq 9993
This theorem is referenced by:  ltbtwnnq  10053  prnmadd  10072  ltexprlem4  10114  ltexprlem7  10117  prlem936  10122
  Copyright terms: Public domain W3C validator