MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexnq Structured version   Visualization version   GIF version

Theorem ltexnq 10662
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by NM, 24-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexnq (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10613 . . . 4 <Q ⊆ (Q × Q)
21brel 5643 . . 3 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
3 ordpinq 10630 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
4 elpqn 10612 . . . . . . . . 9 (𝐴Q𝐴 ∈ (N × N))
54adantr 480 . . . . . . . 8 ((𝐴Q𝐵Q) → 𝐴 ∈ (N × N))
6 xp1st 7836 . . . . . . . 8 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
75, 6syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (1st𝐴) ∈ N)
8 elpqn 10612 . . . . . . . . 9 (𝐵Q𝐵 ∈ (N × N))
98adantl 481 . . . . . . . 8 ((𝐴Q𝐵Q) → 𝐵 ∈ (N × N))
10 xp2nd 7837 . . . . . . . 8 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
119, 10syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (2nd𝐵) ∈ N)
12 mulclpi 10580 . . . . . . 7 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
137, 11, 12syl2anc 583 . . . . . 6 ((𝐴Q𝐵Q) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
14 xp1st 7836 . . . . . . . 8 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
159, 14syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (1st𝐵) ∈ N)
16 xp2nd 7837 . . . . . . . 8 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
175, 16syl 17 . . . . . . 7 ((𝐴Q𝐵Q) → (2nd𝐴) ∈ N)
18 mulclpi 10580 . . . . . . 7 (((1st𝐵) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
1915, 17, 18syl2anc 583 . . . . . 6 ((𝐴Q𝐵Q) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
20 ltexpi 10589 . . . . . 6 ((((1st𝐴) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐵) ·N (2nd𝐴)) ∈ N) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴))))
2113, 19, 20syl2anc 583 . . . . 5 ((𝐴Q𝐵Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴))))
22 relxp 5598 . . . . . . . . . . . 12 Rel (N × N)
234ad2antrr 722 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐴 ∈ (N × N))
24 1st2nd 7853 . . . . . . . . . . . 12 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2522, 23, 24sylancr 586 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2625oveq1d 7270 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩))
277adantr 480 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (1st𝐴) ∈ N)
2817adantr 480 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (2nd𝐴) ∈ N)
29 simpr 484 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝑦N)
30 mulclpi 10580 . . . . . . . . . . . . 13 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
3117, 11, 30syl2anc 583 . . . . . . . . . . . 12 ((𝐴Q𝐵Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
3231adantr 480 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
33 addpipq 10624 . . . . . . . . . . 11 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (𝑦N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
3427, 28, 29, 32, 33syl22anc 835 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
3526, 34eqtrd 2778 . . . . . . . . 9 (((𝐴Q𝐵Q) ∧ 𝑦N) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩)
36 oveq2 7263 . . . . . . . . . . . 12 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦)) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴))))
37 distrpi 10585 . . . . . . . . . . . . 13 ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦)) = (((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) +N ((2nd𝐴) ·N 𝑦))
38 fvex 6769 . . . . . . . . . . . . . . 15 (2nd𝐴) ∈ V
39 fvex 6769 . . . . . . . . . . . . . . 15 (1st𝐴) ∈ V
40 fvex 6769 . . . . . . . . . . . . . . 15 (2nd𝐵) ∈ V
41 mulcompi 10583 . . . . . . . . . . . . . . 15 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
42 mulasspi 10584 . . . . . . . . . . . . . . 15 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
4338, 39, 40, 41, 42caov12 7478 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) = ((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))
44 mulcompi 10583 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N 𝑦) = (𝑦 ·N (2nd𝐴))
4543, 44oveq12i 7267 . . . . . . . . . . . . 13 (((2nd𝐴) ·N ((1st𝐴) ·N (2nd𝐵))) +N ((2nd𝐴) ·N 𝑦)) = (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴)))
4637, 45eqtr2i 2767 . . . . . . . . . . . 12 (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))) = ((2nd𝐴) ·N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦))
47 mulasspi 10584 . . . . . . . . . . . . 13 (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((2nd𝐴) ·N (1st𝐵)))
48 mulcompi 10583 . . . . . . . . . . . . . 14 ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴))
4948oveq2i 7266 . . . . . . . . . . . . 13 ((2nd𝐴) ·N ((2nd𝐴) ·N (1st𝐵))) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴)))
5047, 49eqtri 2766 . . . . . . . . . . . 12 (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((1st𝐵) ·N (2nd𝐴)))
5136, 46, 503eqtr4g 2804 . . . . . . . . . . 11 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)))
52 mulasspi 10584 . . . . . . . . . . . . 13 (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) = ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))
5352eqcomi 2747 . . . . . . . . . . . 12 ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))
5453a1i 11 . . . . . . . . . . 11 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)))
5551, 54opeq12d 4809 . . . . . . . . . 10 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩ = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩)
5655eqeq2d 2749 . . . . . . . . 9 ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐴) ·N (2nd𝐵))) +N (𝑦 ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐴) ·N (2nd𝐵)))⟩ ↔ (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
5735, 56syl5ibcom 244 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
58 fveq2 6756 . . . . . . . . 9 ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ → ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩))
59 adderpq 10643 . . . . . . . . . . 11 (([Q]‘𝐴) +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩))
60 nqerid 10620 . . . . . . . . . . . . 13 (𝐴Q → ([Q]‘𝐴) = 𝐴)
6160ad2antrr 722 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘𝐴) = 𝐴)
6261oveq1d 7270 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → (([Q]‘𝐴) +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
6359, 62eqtr3id 2793 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
64 mulclpi 10580 . . . . . . . . . . . . . . . 16 (((2nd𝐴) ∈ N ∧ (2nd𝐴) ∈ N) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6517, 17, 64syl2anc 583 . . . . . . . . . . . . . . 15 ((𝐴Q𝐵Q) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6665adantr 480 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((2nd𝐴) ·N (2nd𝐴)) ∈ N)
6715adantr 480 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (1st𝐵) ∈ N)
6811adantr 480 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (2nd𝐵) ∈ N)
69 mulcanenq 10647 . . . . . . . . . . . . . 14 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩)
7066, 67, 68, 69syl3anc 1369 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩)
718ad2antlr 723 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐵 ∈ (N × N))
72 1st2nd 7853 . . . . . . . . . . . . . 14 ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
7322, 71, 72sylancr 586 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
7470, 73breqtrrd 5098 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵)
75 mulclpi 10580 . . . . . . . . . . . . . . 15 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (1st𝐵) ∈ N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) ∈ N)
7666, 67, 75syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)) ∈ N)
77 mulclpi 10580 . . . . . . . . . . . . . . 15 ((((2nd𝐴) ·N (2nd𝐴)) ∈ N ∧ (2nd𝐵) ∈ N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) ∈ N)
7866, 68, 77syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴Q𝐵Q) ∧ 𝑦N) → (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵)) ∈ N)
7976, 78opelxpd 5618 . . . . . . . . . . . . 13 (((𝐴Q𝐵Q) ∧ 𝑦N) → ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ∈ (N × N))
80 nqereq 10622 . . . . . . . . . . . . 13 ((⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵 ↔ ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵)))
8179, 71, 80syl2anc 583 . . . . . . . . . . . 12 (((𝐴Q𝐵Q) ∧ 𝑦N) → (⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ ~Q 𝐵 ↔ ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵)))
8274, 81mpbid 231 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = ([Q]‘𝐵))
83 nqerid 10620 . . . . . . . . . . . 12 (𝐵Q → ([Q]‘𝐵) = 𝐵)
8483ad2antlr 723 . . . . . . . . . . 11 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘𝐵) = 𝐵)
8582, 84eqtrd 2778 . . . . . . . . . 10 (((𝐴Q𝐵Q) ∧ 𝑦N) → ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) = 𝐵)
8663, 85eqeq12d 2754 . . . . . . . . 9 (((𝐴Q𝐵Q) ∧ 𝑦N) → (([Q]‘(𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = ([Q]‘⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩) ↔ (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
8758, 86syl5ib 243 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((𝐴 +pQ𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) = ⟨(((2nd𝐴) ·N (2nd𝐴)) ·N (1st𝐵)), (((2nd𝐴) ·N (2nd𝐴)) ·N (2nd𝐵))⟩ → (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
8857, 87syld 47 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
89 fvex 6769 . . . . . . . 8 ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) ∈ V
90 oveq2 7263 . . . . . . . . 9 (𝑥 = ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) → (𝐴 +Q 𝑥) = (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)))
9190eqeq1d 2740 . . . . . . . 8 (𝑥 = ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩) → ((𝐴 +Q 𝑥) = 𝐵 ↔ (𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵))
9289, 91spcev 3535 . . . . . . 7 ((𝐴 +Q ([Q]‘⟨𝑦, ((2nd𝐴) ·N (2nd𝐵))⟩)) = 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵)
9388, 92syl6 35 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑦N) → ((((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
9493rexlimdva 3212 . . . . 5 ((𝐴Q𝐵Q) → (∃𝑦N (((1st𝐴) ·N (2nd𝐵)) +N 𝑦) = ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
9521, 94sylbid 239 . . . 4 ((𝐴Q𝐵Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
963, 95sylbid 239 . . 3 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
972, 96mpcom 38 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 +Q 𝑥) = 𝐵)
98 eleq1 2826 . . . . . . 7 ((𝐴 +Q 𝑥) = 𝐵 → ((𝐴 +Q 𝑥) ∈ Q𝐵Q))
9998biimparc 479 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → (𝐴 +Q 𝑥) ∈ Q)
100 addnqf 10635 . . . . . . . 8 +Q :(Q × Q)⟶Q
101100fdmi 6596 . . . . . . 7 dom +Q = (Q × Q)
102 0nnq 10611 . . . . . . 7 ¬ ∅ ∈ Q
103101, 102ndmovrcl 7436 . . . . . 6 ((𝐴 +Q 𝑥) ∈ Q → (𝐴Q𝑥Q))
104 ltaddnq 10661 . . . . . 6 ((𝐴Q𝑥Q) → 𝐴 <Q (𝐴 +Q 𝑥))
10599, 103, 1043syl 18 . . . . 5 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑥))
106 simpr 484 . . . . 5 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → (𝐴 +Q 𝑥) = 𝐵)
107105, 106breqtrd 5096 . . . 4 ((𝐵Q ∧ (𝐴 +Q 𝑥) = 𝐵) → 𝐴 <Q 𝐵)
108107ex 412 . . 3 (𝐵Q → ((𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
109108exlimdv 1937 . 2 (𝐵Q → (∃𝑥(𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
11097, 109impbid2 225 1 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 +Q 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cop 4564   class class class wbr 5070   × cxp 5578  Rel wrel 5585  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Ncnpi 10531   +N cpli 10532   ·N cmi 10533   <N clti 10534   +pQ cplpq 10535   ~Q ceq 10538  Qcnq 10539  [Q]cerq 10541   +Q cplq 10542   <Q cltq 10545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-ltnq 10605
This theorem is referenced by:  ltbtwnnq  10665  prnmadd  10684  ltexprlem4  10726  ltexprlem7  10729  prlem936  10734
  Copyright terms: Public domain W3C validator