MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmnq Structured version   Visualization version   GIF version

Theorem ltmnq 10925
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltmnq (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))

Proof of Theorem ltmnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulnqf 10902 . . 3 ·Q :(Q × Q)⟶Q
21fdmi 6699 . 2 dom ·Q = (Q × Q)
3 ltrelnq 10879 . 2 <Q ⊆ (Q × Q)
4 0nnq 10877 . 2 ¬ ∅ ∈ Q
5 elpqn 10878 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
653ad2ant3 1135 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
7 xp1st 8000 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
86, 7syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
9 xp2nd 8001 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
106, 9syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
11 mulclpi 10846 . . . . . . . 8 (((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
128, 10, 11syl2anc 584 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
13 ltmpi 10857 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
1412, 13syl 17 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
15 fvex 6871 . . . . . . . 8 (1st𝐶) ∈ V
16 fvex 6871 . . . . . . . 8 (2nd𝐶) ∈ V
17 fvex 6871 . . . . . . . 8 (1st𝐴) ∈ V
18 mulcompi 10849 . . . . . . . 8 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
19 mulasspi 10850 . . . . . . . 8 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
20 fvex 6871 . . . . . . . 8 (2nd𝐵) ∈ V
2115, 16, 17, 18, 19, 20caov4 7620 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵)))
22 fvex 6871 . . . . . . . 8 (1st𝐵) ∈ V
23 fvex 6871 . . . . . . . 8 (2nd𝐴) ∈ V
2415, 16, 22, 18, 19, 23caov4 7620 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))
2521, 24breq12i 5116 . . . . . 6 ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2614, 25bitrdi 287 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))))
27 ordpipq 10895 . . . . 5 (⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩ ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2826, 27bitr4di 289 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
29 elpqn 10878 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
30293ad2ant1 1133 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
31 mulpipq2 10892 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
326, 30, 31syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
33 elpqn 10878 . . . . . . 7 (𝐵Q𝐵 ∈ (N × N))
34333ad2ant2 1134 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
35 mulpipq2 10892 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
366, 34, 35syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
3732, 36breq12d 5120 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
3828, 37bitr4d 282 . . 3 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
39 ordpinq 10896 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
40393adant3 1132 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
41 mulpqnq 10894 . . . . . . 7 ((𝐶Q𝐴Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
4241ancoms 458 . . . . . 6 ((𝐴Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
43423adant2 1131 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
44 mulpqnq 10894 . . . . . . 7 ((𝐶Q𝐵Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4544ancoms 458 . . . . . 6 ((𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
46453adant1 1130 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4743, 46breq12d 5120 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵))))
48 lterpq 10923 . . . 4 ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵)))
4947, 48bitr4di 289 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
5038, 40, 493bitr4d 311 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
512, 3, 4, 50ndmovord 7579 1 (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Ncnpi 10797   ·N cmi 10799   <N clti 10800   ·pQ cmpq 10802   <pQ cltpq 10803  Qcnq 10805  [Q]cerq 10807   ·Q cmq 10809   <Q cltq 10811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-mi 10827  df-lti 10828  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-mq 10868  df-1nq 10869  df-ltnq 10871
This theorem is referenced by:  ltaddnq  10927  ltrnq  10932  addclprlem1  10969  mulclprlem  10972  mulclpr  10973  distrlem4pr  10979  1idpr  10982  prlem934  10986  prlem936  11000  reclem3pr  11002  reclem4pr  11003
  Copyright terms: Public domain W3C validator