MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmnq Structured version   Visualization version   GIF version

Theorem ltmnq 10932
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltmnq (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))

Proof of Theorem ltmnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulnqf 10909 . . 3 ·Q :(Q × Q)⟶Q
21fdmi 6702 . 2 dom ·Q = (Q × Q)
3 ltrelnq 10886 . 2 <Q ⊆ (Q × Q)
4 0nnq 10884 . 2 ¬ ∅ ∈ Q
5 elpqn 10885 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
653ad2ant3 1135 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
7 xp1st 8003 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
86, 7syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
9 xp2nd 8004 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
106, 9syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
11 mulclpi 10853 . . . . . . . 8 (((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
128, 10, 11syl2anc 584 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
13 ltmpi 10864 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
1412, 13syl 17 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
15 fvex 6874 . . . . . . . 8 (1st𝐶) ∈ V
16 fvex 6874 . . . . . . . 8 (2nd𝐶) ∈ V
17 fvex 6874 . . . . . . . 8 (1st𝐴) ∈ V
18 mulcompi 10856 . . . . . . . 8 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
19 mulasspi 10857 . . . . . . . 8 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
20 fvex 6874 . . . . . . . 8 (2nd𝐵) ∈ V
2115, 16, 17, 18, 19, 20caov4 7623 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵)))
22 fvex 6874 . . . . . . . 8 (1st𝐵) ∈ V
23 fvex 6874 . . . . . . . 8 (2nd𝐴) ∈ V
2415, 16, 22, 18, 19, 23caov4 7623 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))
2521, 24breq12i 5119 . . . . . 6 ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2614, 25bitrdi 287 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))))
27 ordpipq 10902 . . . . 5 (⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩ ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2826, 27bitr4di 289 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
29 elpqn 10885 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
30293ad2ant1 1133 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
31 mulpipq2 10899 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
326, 30, 31syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
33 elpqn 10885 . . . . . . 7 (𝐵Q𝐵 ∈ (N × N))
34333ad2ant2 1134 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
35 mulpipq2 10899 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
366, 34, 35syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
3732, 36breq12d 5123 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
3828, 37bitr4d 282 . . 3 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
39 ordpinq 10903 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
40393adant3 1132 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
41 mulpqnq 10901 . . . . . . 7 ((𝐶Q𝐴Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
4241ancoms 458 . . . . . 6 ((𝐴Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
43423adant2 1131 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
44 mulpqnq 10901 . . . . . . 7 ((𝐶Q𝐵Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4544ancoms 458 . . . . . 6 ((𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
46453adant1 1130 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4743, 46breq12d 5123 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵))))
48 lterpq 10930 . . . 4 ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵)))
4947, 48bitr4di 289 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
5038, 40, 493bitr4d 311 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
512, 3, 4, 50ndmovord 7582 1 (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Ncnpi 10804   ·N cmi 10806   <N clti 10807   ·pQ cmpq 10809   <pQ cltpq 10810  Qcnq 10812  [Q]cerq 10814   ·Q cmq 10816   <Q cltq 10818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ni 10832  df-mi 10834  df-lti 10835  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-mq 10875  df-1nq 10876  df-ltnq 10878
This theorem is referenced by:  ltaddnq  10934  ltrnq  10939  addclprlem1  10976  mulclprlem  10979  mulclpr  10980  distrlem4pr  10986  1idpr  10989  prlem934  10993  prlem936  11007  reclem3pr  11009  reclem4pr  11010
  Copyright terms: Public domain W3C validator