MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem4pr Structured version   Visualization version   GIF version

Theorem reclem4pr 10737
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem4pr (𝐴P → (𝐴 ·P 𝐵) = 1P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem4pr
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reclempr.1 . . . . . . 7 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
21reclem2pr 10735 . . . . . 6 (𝐴P𝐵P)
3 df-mp 10671 . . . . . . 7 ·P = (𝑦P, 𝑤P ↦ {𝑢 ∣ ∃𝑓𝑦𝑔𝑤 𝑢 = (𝑓 ·Q 𝑔)})
4 mulclnq 10634 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelv 10687 . . . . . 6 ((𝐴P𝐵P) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
62, 5mpdan 683 . . . . 5 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
71abeq2i 2874 . . . . . . . . 9 (𝑥𝐵 ↔ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
8 ltrelnq 10613 . . . . . . . . . . . . . . 15 <Q ⊆ (Q × Q)
98brel 5643 . . . . . . . . . . . . . 14 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
109simprd 495 . . . . . . . . . . . . 13 (𝑥 <Q 𝑦𝑦Q)
11 elprnq 10678 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧𝐴) → 𝑧Q)
12 ltmnq 10659 . . . . . . . . . . . . . . . . . . 19 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1413biimpd 228 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1514adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
16 recclnq 10653 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (*Q𝑦) ∈ Q)
17 prub 10681 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑧𝐴) ∧ (*Q𝑦) ∈ Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
1816, 17sylan2 592 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
19 ltmnq 10659 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
20 mulcomnq 10640 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
2120a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
22 recidnq 10652 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2321, 22breq12d 5083 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2419, 23bitrd 278 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2524adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2618, 25sylibd 238 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑦) <Q 1Q))
2715, 26anim12d 608 . . . . . . . . . . . . . . 15 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
28 ltsonq 10656 . . . . . . . . . . . . . . . 16 <Q Or Q
2928, 8sotri 6021 . . . . . . . . . . . . . . 15 (((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑥) <Q 1Q)
3027, 29syl6 35 . . . . . . . . . . . . . 14 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3130exp4b 430 . . . . . . . . . . . . 13 ((𝐴P𝑧𝐴) → (𝑦Q → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3210, 31syl5 34 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3332pm2.43d 53 . . . . . . . . . . 11 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q)))
3433impd 410 . . . . . . . . . 10 ((𝐴P𝑧𝐴) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3534exlimdv 1937 . . . . . . . . 9 ((𝐴P𝑧𝐴) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
367, 35syl5bi 241 . . . . . . . 8 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑧 ·Q 𝑥) <Q 1Q))
37 breq1 5073 . . . . . . . . 9 (𝑤 = (𝑧 ·Q 𝑥) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑥) <Q 1Q))
3837biimprcd 249 . . . . . . . 8 ((𝑧 ·Q 𝑥) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
3936, 38syl6 35 . . . . . . 7 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4039expimpd 453 . . . . . 6 (𝐴P → ((𝑧𝐴𝑥𝐵) → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4140rexlimdvv 3221 . . . . 5 (𝐴P → (∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
426, 41sylbid 239 . . . 4 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 <Q 1Q))
43 df-1p 10669 . . . . 5 1P = {𝑤𝑤 <Q 1Q}
4443abeq2i 2874 . . . 4 (𝑤 ∈ 1P𝑤 <Q 1Q)
4542, 44syl6ibr 251 . . 3 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 ∈ 1P))
4645ssrdv 3923 . 2 (𝐴P → (𝐴 ·P 𝐵) ⊆ 1P)
471reclem3pr 10736 . 2 (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
4846, 47eqssd 3934 1 (𝐴P → (𝐴 ·P 𝐵) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  Qcnq 10539  1Qc1q 10540   ·Q cmq 10543  *Qcrq 10544   <Q cltq 10545  Pcnp 10546  1Pc1p 10547   ·P cmp 10549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-1p 10669  df-mp 10671
This theorem is referenced by:  recexpr  10738
  Copyright terms: Public domain W3C validator