Step | Hyp | Ref
| Expression |
1 | | reclempr.1 |
. . . . . . 7
⊢ 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬
(*Q‘𝑦) ∈ 𝐴)} |
2 | 1 | reclem2pr 10804 |
. . . . . 6
⊢ (𝐴 ∈ P →
𝐵 ∈
P) |
3 | | df-mp 10740 |
. . . . . . 7
⊢
·P = (𝑦 ∈ P, 𝑤 ∈ P ↦ {𝑢 ∣ ∃𝑓 ∈ 𝑦 ∃𝑔 ∈ 𝑤 𝑢 = (𝑓 ·Q 𝑔)}) |
4 | | mulclnq 10703 |
. . . . . . 7
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) ∈ Q) |
5 | 3, 4 | genpelv 10756 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑤 ∈ (𝐴
·P 𝐵) ↔ ∃𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑤 = (𝑧 ·Q 𝑥))) |
6 | 2, 5 | mpdan 684 |
. . . . 5
⊢ (𝐴 ∈ P →
(𝑤 ∈ (𝐴
·P 𝐵) ↔ ∃𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑤 = (𝑧 ·Q 𝑥))) |
7 | 1 | abeq2i 2875 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 ↔ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬
(*Q‘𝑦) ∈ 𝐴)) |
8 | | ltrelnq 10682 |
. . . . . . . . . . . . . . 15
⊢
<Q ⊆ (Q ×
Q) |
9 | 8 | brel 5652 |
. . . . . . . . . . . . . 14
⊢ (𝑥 <Q
𝑦 → (𝑥 ∈ Q ∧
𝑦 ∈
Q)) |
10 | 9 | simprd 496 |
. . . . . . . . . . . . 13
⊢ (𝑥 <Q
𝑦 → 𝑦 ∈ Q) |
11 | | elprnq 10747 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → 𝑧 ∈ Q) |
12 | | ltmnq 10728 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ Q →
(𝑥
<Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q
(𝑧
·Q 𝑦))) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q
(𝑧
·Q 𝑦))) |
14 | 13 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q
(𝑧
·Q 𝑦))) |
15 | 14 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) ∧ 𝑦 ∈ Q) → (𝑥 <Q
𝑦 → (𝑧
·Q 𝑥) <Q (𝑧
·Q 𝑦))) |
16 | | recclnq 10722 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ Q →
(*Q‘𝑦) ∈ Q) |
17 | | prub 10750 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) ∧
(*Q‘𝑦) ∈ Q) → (¬
(*Q‘𝑦) ∈ 𝐴 → 𝑧 <Q
(*Q‘𝑦))) |
18 | 16, 17 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) ∧ 𝑦 ∈ Q) → (¬
(*Q‘𝑦) ∈ 𝐴 → 𝑧 <Q
(*Q‘𝑦))) |
19 | | ltmnq 10728 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ Q →
(𝑧
<Q (*Q‘𝑦) ↔ (𝑦 ·Q 𝑧) <Q
(𝑦
·Q (*Q‘𝑦)))) |
20 | | mulcomnq 10709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦
·Q 𝑧) = (𝑧 ·Q 𝑦) |
21 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ Q →
(𝑦
·Q 𝑧) = (𝑧 ·Q 𝑦)) |
22 | | recidnq 10721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ Q →
(𝑦
·Q (*Q‘𝑦)) =
1Q) |
23 | 21, 22 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ Q →
((𝑦
·Q 𝑧) <Q (𝑦
·Q (*Q‘𝑦)) ↔ (𝑧 ·Q 𝑦) <Q
1Q)) |
24 | 19, 23 | bitrd 278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ Q →
(𝑧
<Q (*Q‘𝑦) ↔ (𝑧 ·Q 𝑦) <Q
1Q)) |
25 | 24 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) ∧ 𝑦 ∈ Q) → (𝑧 <Q
(*Q‘𝑦) ↔ (𝑧 ·Q 𝑦) <Q
1Q)) |
26 | 18, 25 | sylibd 238 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) ∧ 𝑦 ∈ Q) → (¬
(*Q‘𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑦) <Q
1Q)) |
27 | 15, 26 | anim12d 609 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) ∧ 𝑦 ∈ Q) → ((𝑥 <Q
𝑦 ∧ ¬
(*Q‘𝑦) ∈ 𝐴) → ((𝑧 ·Q 𝑥) <Q
(𝑧
·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q
1Q))) |
28 | | ltsonq 10725 |
. . . . . . . . . . . . . . . 16
⊢
<Q Or Q |
29 | 28, 8 | sotri 6032 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧
·Q 𝑥) <Q (𝑧
·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q
1Q) → (𝑧 ·Q 𝑥) <Q
1Q) |
30 | 27, 29 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) ∧ 𝑦 ∈ Q) → ((𝑥 <Q
𝑦 ∧ ¬
(*Q‘𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q
1Q)) |
31 | 30 | exp4b 431 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (𝑦 ∈ Q → (𝑥 <Q
𝑦 → (¬
(*Q‘𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q
1Q)))) |
32 | 10, 31 | syl5 34 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (𝑥 <Q 𝑦 → (𝑥 <Q 𝑦 → (¬
(*Q‘𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q
1Q)))) |
33 | 32 | pm2.43d 53 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (𝑥 <Q 𝑦 → (¬
(*Q‘𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q
1Q))) |
34 | 33 | impd 411 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → ((𝑥 <Q 𝑦 ∧ ¬
(*Q‘𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q
1Q)) |
35 | 34 | exlimdv 1936 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬
(*Q‘𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q
1Q)) |
36 | 7, 35 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐵 → (𝑧 ·Q 𝑥) <Q
1Q)) |
37 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑤 = (𝑧 ·Q 𝑥) → (𝑤 <Q
1Q ↔ (𝑧 ·Q 𝑥) <Q
1Q)) |
38 | 37 | biimprcd 249 |
. . . . . . . 8
⊢ ((𝑧
·Q 𝑥) <Q
1Q → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q
1Q)) |
39 | 36, 38 | syl6 35 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐵 → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q
1Q))) |
40 | 39 | expimpd 454 |
. . . . . 6
⊢ (𝐴 ∈ P →
((𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q
1Q))) |
41 | 40 | rexlimdvv 3222 |
. . . . 5
⊢ (𝐴 ∈ P →
(∃𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q
1Q)) |
42 | 6, 41 | sylbid 239 |
. . . 4
⊢ (𝐴 ∈ P →
(𝑤 ∈ (𝐴
·P 𝐵) → 𝑤 <Q
1Q)) |
43 | | df-1p 10738 |
. . . . 5
⊢
1P = {𝑤 ∣ 𝑤 <Q
1Q} |
44 | 43 | abeq2i 2875 |
. . . 4
⊢ (𝑤 ∈
1P ↔ 𝑤 <Q
1Q) |
45 | 42, 44 | syl6ibr 251 |
. . 3
⊢ (𝐴 ∈ P →
(𝑤 ∈ (𝐴
·P 𝐵) → 𝑤 ∈
1P)) |
46 | 45 | ssrdv 3927 |
. 2
⊢ (𝐴 ∈ P →
(𝐴
·P 𝐵) ⊆
1P) |
47 | 1 | reclem3pr 10805 |
. 2
⊢ (𝐴 ∈ P →
1P ⊆ (𝐴 ·P 𝐵)) |
48 | 46, 47 | eqssd 3938 |
1
⊢ (𝐴 ∈ P →
(𝐴
·P 𝐵) =
1P) |