MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem4pr Structured version   Visualization version   GIF version

Theorem reclem4pr 10941
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem4pr (𝐴P → (𝐴 ·P 𝐵) = 1P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem4pr
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reclempr.1 . . . . . . 7 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
21reclem2pr 10939 . . . . . 6 (𝐴P𝐵P)
3 df-mp 10875 . . . . . . 7 ·P = (𝑦P, 𝑤P ↦ {𝑢 ∣ ∃𝑓𝑦𝑔𝑤 𝑢 = (𝑓 ·Q 𝑔)})
4 mulclnq 10838 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelv 10891 . . . . . 6 ((𝐴P𝐵P) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
62, 5mpdan 687 . . . . 5 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
71eqabri 2874 . . . . . . . . 9 (𝑥𝐵 ↔ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
8 ltrelnq 10817 . . . . . . . . . . . . . . 15 <Q ⊆ (Q × Q)
98brel 5679 . . . . . . . . . . . . . 14 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
109simprd 495 . . . . . . . . . . . . 13 (𝑥 <Q 𝑦𝑦Q)
11 elprnq 10882 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧𝐴) → 𝑧Q)
12 ltmnq 10863 . . . . . . . . . . . . . . . . . . 19 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1413biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1514adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
16 recclnq 10857 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (*Q𝑦) ∈ Q)
17 prub 10885 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑧𝐴) ∧ (*Q𝑦) ∈ Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
1816, 17sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
19 ltmnq 10863 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
20 mulcomnq 10844 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
2120a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
22 recidnq 10856 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2321, 22breq12d 5102 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2419, 23bitrd 279 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2524adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2618, 25sylibd 239 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑦) <Q 1Q))
2715, 26anim12d 609 . . . . . . . . . . . . . . 15 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
28 ltsonq 10860 . . . . . . . . . . . . . . . 16 <Q Or Q
2928, 8sotri 6073 . . . . . . . . . . . . . . 15 (((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑥) <Q 1Q)
3027, 29syl6 35 . . . . . . . . . . . . . 14 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3130exp4b 430 . . . . . . . . . . . . 13 ((𝐴P𝑧𝐴) → (𝑦Q → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3210, 31syl5 34 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3332pm2.43d 53 . . . . . . . . . . 11 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q)))
3433impd 410 . . . . . . . . . 10 ((𝐴P𝑧𝐴) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3534exlimdv 1934 . . . . . . . . 9 ((𝐴P𝑧𝐴) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
367, 35biimtrid 242 . . . . . . . 8 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑧 ·Q 𝑥) <Q 1Q))
37 breq1 5092 . . . . . . . . 9 (𝑤 = (𝑧 ·Q 𝑥) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑥) <Q 1Q))
3837biimprcd 250 . . . . . . . 8 ((𝑧 ·Q 𝑥) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
3936, 38syl6 35 . . . . . . 7 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4039expimpd 453 . . . . . 6 (𝐴P → ((𝑧𝐴𝑥𝐵) → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4140rexlimdvv 3188 . . . . 5 (𝐴P → (∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
426, 41sylbid 240 . . . 4 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 <Q 1Q))
43 df-1p 10873 . . . . 5 1P = {𝑤𝑤 <Q 1Q}
4443eqabri 2874 . . . 4 (𝑤 ∈ 1P𝑤 <Q 1Q)
4542, 44imbitrrdi 252 . . 3 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 ∈ 1P))
4645ssrdv 3935 . 2 (𝐴P → (𝐴 ·P 𝐵) ⊆ 1P)
471reclem3pr 10940 . 2 (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
4846, 47eqssd 3947 1 (𝐴P → (𝐴 ·P 𝐵) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  Qcnq 10743  1Qc1q 10744   ·Q cmq 10747  *Qcrq 10748   <Q cltq 10749  Pcnp 10750  1Pc1p 10751   ·P cmp 10753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ni 10763  df-pli 10764  df-mi 10765  df-lti 10766  df-plpq 10799  df-mpq 10800  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-plq 10805  df-mq 10806  df-1nq 10807  df-rq 10808  df-ltnq 10809  df-np 10872  df-1p 10873  df-mp 10875
This theorem is referenced by:  recexpr  10942
  Copyright terms: Public domain W3C validator