MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem4pr Structured version   Visualization version   GIF version

Theorem reclem4pr 11119
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem4pr (𝐴P → (𝐴 ·P 𝐵) = 1P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem4pr
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reclempr.1 . . . . . . 7 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
21reclem2pr 11117 . . . . . 6 (𝐴P𝐵P)
3 df-mp 11053 . . . . . . 7 ·P = (𝑦P, 𝑤P ↦ {𝑢 ∣ ∃𝑓𝑦𝑔𝑤 𝑢 = (𝑓 ·Q 𝑔)})
4 mulclnq 11016 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelv 11069 . . . . . 6 ((𝐴P𝐵P) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
62, 5mpdan 686 . . . . 5 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
71eqabri 2888 . . . . . . . . 9 (𝑥𝐵 ↔ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
8 ltrelnq 10995 . . . . . . . . . . . . . . 15 <Q ⊆ (Q × Q)
98brel 5765 . . . . . . . . . . . . . 14 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
109simprd 495 . . . . . . . . . . . . 13 (𝑥 <Q 𝑦𝑦Q)
11 elprnq 11060 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧𝐴) → 𝑧Q)
12 ltmnq 11041 . . . . . . . . . . . . . . . . . . 19 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1413biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1514adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
16 recclnq 11035 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (*Q𝑦) ∈ Q)
17 prub 11063 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑧𝐴) ∧ (*Q𝑦) ∈ Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
1816, 17sylan2 592 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
19 ltmnq 11041 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
20 mulcomnq 11022 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
2120a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
22 recidnq 11034 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2321, 22breq12d 5179 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2419, 23bitrd 279 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2524adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2618, 25sylibd 239 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑦) <Q 1Q))
2715, 26anim12d 608 . . . . . . . . . . . . . . 15 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
28 ltsonq 11038 . . . . . . . . . . . . . . . 16 <Q Or Q
2928, 8sotri 6159 . . . . . . . . . . . . . . 15 (((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑥) <Q 1Q)
3027, 29syl6 35 . . . . . . . . . . . . . 14 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3130exp4b 430 . . . . . . . . . . . . 13 ((𝐴P𝑧𝐴) → (𝑦Q → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3210, 31syl5 34 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3332pm2.43d 53 . . . . . . . . . . 11 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q)))
3433impd 410 . . . . . . . . . 10 ((𝐴P𝑧𝐴) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3534exlimdv 1932 . . . . . . . . 9 ((𝐴P𝑧𝐴) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
367, 35biimtrid 242 . . . . . . . 8 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑧 ·Q 𝑥) <Q 1Q))
37 breq1 5169 . . . . . . . . 9 (𝑤 = (𝑧 ·Q 𝑥) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑥) <Q 1Q))
3837biimprcd 250 . . . . . . . 8 ((𝑧 ·Q 𝑥) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
3936, 38syl6 35 . . . . . . 7 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4039expimpd 453 . . . . . 6 (𝐴P → ((𝑧𝐴𝑥𝐵) → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4140rexlimdvv 3218 . . . . 5 (𝐴P → (∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
426, 41sylbid 240 . . . 4 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 <Q 1Q))
43 df-1p 11051 . . . . 5 1P = {𝑤𝑤 <Q 1Q}
4443eqabri 2888 . . . 4 (𝑤 ∈ 1P𝑤 <Q 1Q)
4542, 44imbitrrdi 252 . . 3 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 ∈ 1P))
4645ssrdv 4014 . 2 (𝐴P → (𝐴 ·P 𝐵) ⊆ 1P)
471reclem3pr 11118 . 2 (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
4846, 47eqssd 4026 1 (𝐴P → (𝐴 ·P 𝐵) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Qcnq 10921  1Qc1q 10922   ·Q cmq 10925  *Qcrq 10926   <Q cltq 10927  Pcnp 10928  1Pc1p 10929   ·P cmp 10931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-1p 11051  df-mp 11053
This theorem is referenced by:  recexpr  11120
  Copyright terms: Public domain W3C validator