MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem4pr Structured version   Visualization version   GIF version

Theorem reclem4pr 10664
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem4pr (𝐴P → (𝐴 ·P 𝐵) = 1P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem4pr
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reclempr.1 . . . . . . 7 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
21reclem2pr 10662 . . . . . 6 (𝐴P𝐵P)
3 df-mp 10598 . . . . . . 7 ·P = (𝑦P, 𝑤P ↦ {𝑢 ∣ ∃𝑓𝑦𝑔𝑤 𝑢 = (𝑓 ·Q 𝑔)})
4 mulclnq 10561 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelv 10614 . . . . . 6 ((𝐴P𝐵P) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
62, 5mpdan 687 . . . . 5 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
71abeq2i 2872 . . . . . . . . 9 (𝑥𝐵 ↔ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
8 ltrelnq 10540 . . . . . . . . . . . . . . 15 <Q ⊆ (Q × Q)
98brel 5614 . . . . . . . . . . . . . 14 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
109simprd 499 . . . . . . . . . . . . 13 (𝑥 <Q 𝑦𝑦Q)
11 elprnq 10605 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧𝐴) → 𝑧Q)
12 ltmnq 10586 . . . . . . . . . . . . . . . . . . 19 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1413biimpd 232 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
1514adantr 484 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑥 <Q 𝑦 → (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
16 recclnq 10580 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (*Q𝑦) ∈ Q)
17 prub 10608 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑧𝐴) ∧ (*Q𝑦) ∈ Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
1816, 17sylan2 596 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴𝑧 <Q (*Q𝑦)))
19 ltmnq 10586 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
20 mulcomnq 10567 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
2120a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
22 recidnq 10579 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2321, 22breq12d 5066 . . . . . . . . . . . . . . . . . . 19 (𝑦Q → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2419, 23bitrd 282 . . . . . . . . . . . . . . . . . 18 (𝑦Q → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2524adantl 485 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2618, 25sylibd 242 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑦) <Q 1Q))
2715, 26anim12d 612 . . . . . . . . . . . . . . 15 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
28 ltsonq 10583 . . . . . . . . . . . . . . . 16 <Q Or Q
2928, 8sotri 5992 . . . . . . . . . . . . . . 15 (((𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑥) <Q 1Q)
3027, 29syl6 35 . . . . . . . . . . . . . 14 (((𝐴P𝑧𝐴) ∧ 𝑦Q) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3130exp4b 434 . . . . . . . . . . . . 13 ((𝐴P𝑧𝐴) → (𝑦Q → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3210, 31syl5 34 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q))))
3332pm2.43d 53 . . . . . . . . . . 11 ((𝐴P𝑧𝐴) → (𝑥 <Q 𝑦 → (¬ (*Q𝑦) ∈ 𝐴 → (𝑧 ·Q 𝑥) <Q 1Q)))
3433impd 414 . . . . . . . . . 10 ((𝐴P𝑧𝐴) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
3534exlimdv 1941 . . . . . . . . 9 ((𝐴P𝑧𝐴) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 ·Q 𝑥) <Q 1Q))
367, 35syl5bi 245 . . . . . . . 8 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑧 ·Q 𝑥) <Q 1Q))
37 breq1 5056 . . . . . . . . 9 (𝑤 = (𝑧 ·Q 𝑥) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑥) <Q 1Q))
3837biimprcd 253 . . . . . . . 8 ((𝑧 ·Q 𝑥) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
3936, 38syl6 35 . . . . . . 7 ((𝐴P𝑧𝐴) → (𝑥𝐵 → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4039expimpd 457 . . . . . 6 (𝐴P → ((𝑧𝐴𝑥𝐵) → (𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q)))
4140rexlimdvv 3212 . . . . 5 (𝐴P → (∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥) → 𝑤 <Q 1Q))
426, 41sylbid 243 . . . 4 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 <Q 1Q))
43 df-1p 10596 . . . . 5 1P = {𝑤𝑤 <Q 1Q}
4443abeq2i 2872 . . . 4 (𝑤 ∈ 1P𝑤 <Q 1Q)
4542, 44syl6ibr 255 . . 3 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) → 𝑤 ∈ 1P))
4645ssrdv 3907 . 2 (𝐴P → (𝐴 ·P 𝐵) ⊆ 1P)
471reclem3pr 10663 . 2 (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
4846, 47eqssd 3918 1 (𝐴P → (𝐴 ·P 𝐵) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  Qcnq 10466  1Qc1q 10467   ·Q cmq 10470  *Qcrq 10471   <Q cltq 10472  Pcnp 10473  1Pc1p 10474   ·P cmp 10476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-ni 10486  df-pli 10487  df-mi 10488  df-lti 10489  df-plpq 10522  df-mpq 10523  df-ltpq 10524  df-enq 10525  df-nq 10526  df-erq 10527  df-plq 10528  df-mq 10529  df-1nq 10530  df-rq 10531  df-ltnq 10532  df-np 10595  df-1p 10596  df-mp 10598
This theorem is referenced by:  recexpr  10665
  Copyright terms: Public domain W3C validator