MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbtwnnq Structured version   Visualization version   GIF version

Theorem ltbtwnnq 11016
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltbtwnnq (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10964 . . . . 5 <Q ⊆ (Q × Q)
21brel 5754 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simprd 495 . . 3 (𝐴 <Q 𝐵𝐵Q)
4 ltexnq 11013 . . . 4 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑦(𝐴 +Q 𝑦) = 𝐵))
5 eleq1 2827 . . . . . . . . . 10 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑦) ∈ Q𝐵Q))
65biimparc 479 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑦) ∈ Q)
7 addnqf 10986 . . . . . . . . . . 11 +Q :(Q × Q)⟶Q
87fdmi 6748 . . . . . . . . . 10 dom +Q = (Q × Q)
9 0nnq 10962 . . . . . . . . . 10 ¬ ∅ ∈ Q
108, 9ndmovrcl 7619 . . . . . . . . 9 ((𝐴 +Q 𝑦) ∈ Q → (𝐴Q𝑦Q))
116, 10syl 17 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴Q𝑦Q))
1211simprd 495 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝑦Q)
13 nsmallnq 11015 . . . . . . . 8 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
1411simpld 494 . . . . . . . . . . . 12 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴Q)
151brel 5754 . . . . . . . . . . . . 13 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
1615simpld 494 . . . . . . . . . . . 12 (𝑧 <Q 𝑦𝑧Q)
17 ltaddnq 11012 . . . . . . . . . . . 12 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1814, 16, 17syl2an 596 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
19 ltanq 11009 . . . . . . . . . . . . . 14 (𝐴Q → (𝑧 <Q 𝑦 ↔ (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦)))
2019biimpa 476 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
2114, 20sylan 580 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
22 simplr 769 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑦) = 𝐵)
2321, 22breqtrd 5174 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q 𝐵)
24 ovex 7464 . . . . . . . . . . . 12 (𝐴 +Q 𝑧) ∈ V
25 breq2 5152 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
26 breq1 5151 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2725, 26anbi12d 632 . . . . . . . . . . . 12 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2824, 27spcev 3606 . . . . . . . . . . 11 ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
2918, 23, 28syl2anc 584 . . . . . . . . . 10 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3029ex 412 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3130exlimdv 1931 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3213, 31syl5 34 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3312, 32mpd 15 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3433ex 412 . . . . 5 (𝐵Q → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3534exlimdv 1931 . . . 4 (𝐵Q → (∃𝑦(𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
364, 35sylbid 240 . . 3 (𝐵Q → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
373, 36mpcom 38 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
38 ltsonq 11007 . . . 4 <Q Or Q
3938, 1sotri 6150 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4039exlimiv 1928 . 2 (∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4137, 40impbii 209 1 (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106   class class class wbr 5148   × cxp 5687  (class class class)co 7431  Qcnq 10890   +Q cplq 10893   <Q cltq 10896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956
This theorem is referenced by:  nqpr  11052  reclem2pr  11086
  Copyright terms: Public domain W3C validator