MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbtwnnq Structured version   Visualization version   GIF version

Theorem ltbtwnnq 10907
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltbtwnnq (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10855 . . . . 5 <Q ⊆ (Q × Q)
21brel 5696 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simprd 495 . . 3 (𝐴 <Q 𝐵𝐵Q)
4 ltexnq 10904 . . . 4 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑦(𝐴 +Q 𝑦) = 𝐵))
5 eleq1 2816 . . . . . . . . . 10 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑦) ∈ Q𝐵Q))
65biimparc 479 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑦) ∈ Q)
7 addnqf 10877 . . . . . . . . . . 11 +Q :(Q × Q)⟶Q
87fdmi 6681 . . . . . . . . . 10 dom +Q = (Q × Q)
9 0nnq 10853 . . . . . . . . . 10 ¬ ∅ ∈ Q
108, 9ndmovrcl 7555 . . . . . . . . 9 ((𝐴 +Q 𝑦) ∈ Q → (𝐴Q𝑦Q))
116, 10syl 17 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴Q𝑦Q))
1211simprd 495 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝑦Q)
13 nsmallnq 10906 . . . . . . . 8 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
1411simpld 494 . . . . . . . . . . . 12 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴Q)
151brel 5696 . . . . . . . . . . . . 13 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
1615simpld 494 . . . . . . . . . . . 12 (𝑧 <Q 𝑦𝑧Q)
17 ltaddnq 10903 . . . . . . . . . . . 12 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1814, 16, 17syl2an 596 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
19 ltanq 10900 . . . . . . . . . . . . . 14 (𝐴Q → (𝑧 <Q 𝑦 ↔ (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦)))
2019biimpa 476 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
2114, 20sylan 580 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
22 simplr 768 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑦) = 𝐵)
2321, 22breqtrd 5128 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q 𝐵)
24 ovex 7402 . . . . . . . . . . . 12 (𝐴 +Q 𝑧) ∈ V
25 breq2 5106 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
26 breq1 5105 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2725, 26anbi12d 632 . . . . . . . . . . . 12 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2824, 27spcev 3569 . . . . . . . . . . 11 ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
2918, 23, 28syl2anc 584 . . . . . . . . . 10 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3029ex 412 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3130exlimdv 1933 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3213, 31syl5 34 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3312, 32mpd 15 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3433ex 412 . . . . 5 (𝐵Q → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3534exlimdv 1933 . . . 4 (𝐵Q → (∃𝑦(𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
364, 35sylbid 240 . . 3 (𝐵Q → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
373, 36mpcom 38 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
38 ltsonq 10898 . . . 4 <Q Or Q
3938, 1sotri 6088 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4039exlimiv 1930 . 2 (∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4137, 40impbii 209 1 (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109   class class class wbr 5102   × cxp 5629  (class class class)co 7369  Qcnq 10781   +Q cplq 10784   <Q cltq 10787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847
This theorem is referenced by:  nqpr  10943  reclem2pr  10977
  Copyright terms: Public domain W3C validator