MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbtwnnq Structured version   Visualization version   GIF version

Theorem ltbtwnnq 10400
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltbtwnnq (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10348 . . . . 5 <Q ⊆ (Q × Q)
21brel 5617 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simprd 498 . . 3 (𝐴 <Q 𝐵𝐵Q)
4 ltexnq 10397 . . . 4 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑦(𝐴 +Q 𝑦) = 𝐵))
5 eleq1 2900 . . . . . . . . . 10 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑦) ∈ Q𝐵Q))
65biimparc 482 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑦) ∈ Q)
7 addnqf 10370 . . . . . . . . . . 11 +Q :(Q × Q)⟶Q
87fdmi 6524 . . . . . . . . . 10 dom +Q = (Q × Q)
9 0nnq 10346 . . . . . . . . . 10 ¬ ∅ ∈ Q
108, 9ndmovrcl 7334 . . . . . . . . 9 ((𝐴 +Q 𝑦) ∈ Q → (𝐴Q𝑦Q))
116, 10syl 17 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴Q𝑦Q))
1211simprd 498 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝑦Q)
13 nsmallnq 10399 . . . . . . . 8 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
1411simpld 497 . . . . . . . . . . . 12 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴Q)
151brel 5617 . . . . . . . . . . . . 13 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
1615simpld 497 . . . . . . . . . . . 12 (𝑧 <Q 𝑦𝑧Q)
17 ltaddnq 10396 . . . . . . . . . . . 12 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1814, 16, 17syl2an 597 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
19 ltanq 10393 . . . . . . . . . . . . . 14 (𝐴Q → (𝑧 <Q 𝑦 ↔ (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦)))
2019biimpa 479 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
2114, 20sylan 582 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
22 simplr 767 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑦) = 𝐵)
2321, 22breqtrd 5092 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q 𝐵)
24 ovex 7189 . . . . . . . . . . . 12 (𝐴 +Q 𝑧) ∈ V
25 breq2 5070 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
26 breq1 5069 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2725, 26anbi12d 632 . . . . . . . . . . . 12 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2824, 27spcev 3607 . . . . . . . . . . 11 ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
2918, 23, 28syl2anc 586 . . . . . . . . . 10 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3029ex 415 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3130exlimdv 1934 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3213, 31syl5 34 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3312, 32mpd 15 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3433ex 415 . . . . 5 (𝐵Q → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3534exlimdv 1934 . . . 4 (𝐵Q → (∃𝑦(𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
364, 35sylbid 242 . . 3 (𝐵Q → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
373, 36mpcom 38 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
38 ltsonq 10391 . . . 4 <Q Or Q
3938, 1sotri 5987 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4039exlimiv 1931 . 2 (∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4137, 40impbii 211 1 (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114   class class class wbr 5066   × cxp 5553  (class class class)co 7156  Qcnq 10274   +Q cplq 10277   <Q cltq 10280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340
This theorem is referenced by:  nqpr  10436  reclem2pr  10470
  Copyright terms: Public domain W3C validator