MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbtwnnq Structured version   Visualization version   GIF version

Theorem ltbtwnnq 10972
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltbtwnnq (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10920 . . . . 5 <Q ⊆ (Q × Q)
21brel 5741 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simprd 496 . . 3 (𝐴 <Q 𝐵𝐵Q)
4 ltexnq 10969 . . . 4 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑦(𝐴 +Q 𝑦) = 𝐵))
5 eleq1 2821 . . . . . . . . . 10 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑦) ∈ Q𝐵Q))
65biimparc 480 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑦) ∈ Q)
7 addnqf 10942 . . . . . . . . . . 11 +Q :(Q × Q)⟶Q
87fdmi 6729 . . . . . . . . . 10 dom +Q = (Q × Q)
9 0nnq 10918 . . . . . . . . . 10 ¬ ∅ ∈ Q
108, 9ndmovrcl 7592 . . . . . . . . 9 ((𝐴 +Q 𝑦) ∈ Q → (𝐴Q𝑦Q))
116, 10syl 17 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴Q𝑦Q))
1211simprd 496 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝑦Q)
13 nsmallnq 10971 . . . . . . . 8 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
1411simpld 495 . . . . . . . . . . . 12 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴Q)
151brel 5741 . . . . . . . . . . . . 13 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
1615simpld 495 . . . . . . . . . . . 12 (𝑧 <Q 𝑦𝑧Q)
17 ltaddnq 10968 . . . . . . . . . . . 12 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1814, 16, 17syl2an 596 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
19 ltanq 10965 . . . . . . . . . . . . . 14 (𝐴Q → (𝑧 <Q 𝑦 ↔ (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦)))
2019biimpa 477 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
2114, 20sylan 580 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
22 simplr 767 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑦) = 𝐵)
2321, 22breqtrd 5174 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q 𝐵)
24 ovex 7441 . . . . . . . . . . . 12 (𝐴 +Q 𝑧) ∈ V
25 breq2 5152 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
26 breq1 5151 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2725, 26anbi12d 631 . . . . . . . . . . . 12 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2824, 27spcev 3596 . . . . . . . . . . 11 ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
2918, 23, 28syl2anc 584 . . . . . . . . . 10 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3029ex 413 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3130exlimdv 1936 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3213, 31syl5 34 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3312, 32mpd 15 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3433ex 413 . . . . 5 (𝐵Q → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3534exlimdv 1936 . . . 4 (𝐵Q → (∃𝑦(𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
364, 35sylbid 239 . . 3 (𝐵Q → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
373, 36mpcom 38 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
38 ltsonq 10963 . . . 4 <Q Or Q
3938, 1sotri 6128 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4039exlimiv 1933 . 2 (∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4137, 40impbii 208 1 (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106   class class class wbr 5148   × cxp 5674  (class class class)co 7408  Qcnq 10846   +Q cplq 10849   <Q cltq 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-omul 8470  df-er 8702  df-ni 10866  df-pli 10867  df-mi 10868  df-lti 10869  df-plpq 10902  df-mpq 10903  df-ltpq 10904  df-enq 10905  df-nq 10906  df-erq 10907  df-plq 10908  df-mq 10909  df-1nq 10910  df-rq 10911  df-ltnq 10912
This theorem is referenced by:  nqpr  11008  reclem2pr  11042
  Copyright terms: Public domain W3C validator