MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idpr Structured version   Visualization version   GIF version

Theorem 1idpr 10989
Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1idpr (𝐴P → (𝐴 ·P 1P) = 𝐴)

Proof of Theorem 1idpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 3055 . . . . 5 (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)))
2 elprnq 10951 . . . . . . . . . 10 ((𝐴P𝑓𝐴) → 𝑓Q)
3 breq1 5113 . . . . . . . . . . 11 (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
4 df-1p 10942 . . . . . . . . . . . . 13 1P = {𝑔𝑔 <Q 1Q}
54eqabri 2872 . . . . . . . . . . . 12 (𝑔 ∈ 1P𝑔 <Q 1Q)
6 ltmnq 10932 . . . . . . . . . . . . 13 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
7 mulidnq 10923 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q 1Q) = 𝑓)
87breq2d 5122 . . . . . . . . . . . . 13 (𝑓Q → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
96, 8bitrd 279 . . . . . . . . . . . 12 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
105, 9bitr2id 284 . . . . . . . . . . 11 (𝑓Q → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ 1P))
113, 10sylan9bbr 510 . . . . . . . . . 10 ((𝑓Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
122, 11sylan 580 . . . . . . . . 9 (((𝐴P𝑓𝐴) ∧ 𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
1312ex 412 . . . . . . . 8 ((𝐴P𝑓𝐴) → (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓𝑔 ∈ 1P)))
1413pm5.32rd 578 . . . . . . 7 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
1514exbidv 1921 . . . . . 6 ((𝐴P𝑓𝐴) → (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
16 19.42v 1953 . . . . . 6 (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
1715, 16bitr3di 286 . . . . 5 ((𝐴P𝑓𝐴) → (∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
181, 17bitrid 283 . . . 4 ((𝐴P𝑓𝐴) → (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
1918rexbidva 3156 . . 3 (𝐴P → (∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
20 1pr 10975 . . . 4 1PP
21 df-mp 10944 . . . . 5 ·P = (𝑦P, 𝑧P ↦ {𝑤 ∣ ∃𝑢𝑦𝑣𝑧 𝑤 = (𝑢 ·Q 𝑣)})
22 mulclnq 10907 . . . . 5 ((𝑢Q𝑣Q) → (𝑢 ·Q 𝑣) ∈ Q)
2321, 22genpelv 10960 . . . 4 ((𝐴P ∧ 1PP) → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
2420, 23mpan2 691 . . 3 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
25 prnmax 10955 . . . . . 6 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 𝑥 <Q 𝑓)
26 ltrelnq 10886 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
2726brel 5706 . . . . . . . . . 10 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
28 vex 3454 . . . . . . . . . . . . . 14 𝑓 ∈ V
29 vex 3454 . . . . . . . . . . . . . 14 𝑥 ∈ V
30 fvex 6874 . . . . . . . . . . . . . 14 (*Q𝑓) ∈ V
31 mulcomnq 10913 . . . . . . . . . . . . . 14 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
32 mulassnq 10919 . . . . . . . . . . . . . 14 ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤))
3328, 29, 30, 31, 32caov12 7620 . . . . . . . . . . . . 13 (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q (𝑓 ·Q (*Q𝑓)))
34 recidnq 10925 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q (*Q𝑓)) = 1Q)
3534oveq2d 7406 . . . . . . . . . . . . 13 (𝑓Q → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
3633, 35eqtrid 2777 . . . . . . . . . . . 12 (𝑓Q → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
37 mulidnq 10923 . . . . . . . . . . . 12 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3836, 37sylan9eqr 2787 . . . . . . . . . . 11 ((𝑥Q𝑓Q) → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = 𝑥)
3938eqcomd 2736 . . . . . . . . . 10 ((𝑥Q𝑓Q) → 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
40 ovex 7423 . . . . . . . . . . 11 (𝑥 ·Q (*Q𝑓)) ∈ V
41 oveq2 7398 . . . . . . . . . . . 12 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑓 ·Q 𝑔) = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
4241eqeq2d 2741 . . . . . . . . . . 11 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑥 = (𝑓 ·Q 𝑔) ↔ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))))
4340, 42spcev 3575 . . . . . . . . . 10 (𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4427, 39, 433syl 18 . . . . . . . . 9 (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4544a1i 11 . . . . . . . 8 (𝑓𝐴 → (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4645ancld 550 . . . . . . 7 (𝑓𝐴 → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
4746reximia 3065 . . . . . 6 (∃𝑓𝐴 𝑥 <Q 𝑓 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4825, 47syl 17 . . . . 5 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4948ex 412 . . . 4 (𝐴P → (𝑥𝐴 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
50 prcdnq 10953 . . . . . 6 ((𝐴P𝑓𝐴) → (𝑥 <Q 𝑓𝑥𝐴))
5150adantrd 491 . . . . 5 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5251rexlimdva 3135 . . . 4 (𝐴P → (∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5349, 52impbid 212 . . 3 (𝐴P → (𝑥𝐴 ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
5419, 24, 533bitr4d 311 . 2 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ 𝑥𝐴))
5554eqrdv 2728 1 (𝐴P → (𝐴 ·P 1P) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Qcnq 10812  1Qc1q 10813   ·Q cmq 10816  *Qcrq 10817   <Q cltq 10818  Pcnp 10819  1Pc1p 10820   ·P cmp 10822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-1p 10942  df-mp 10944
This theorem is referenced by:  m1m1sr  11053  1idsr  11058
  Copyright terms: Public domain W3C validator