MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idpr Structured version   Visualization version   GIF version

Theorem 1idpr 10186
Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1idpr (𝐴P → (𝐴 ·P 1P) = 𝐴)

Proof of Theorem 1idpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 3095 . . . . 5 (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)))
2 19.42v 1996 . . . . . 6 (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
3 elprnq 10148 . . . . . . . . . 10 ((𝐴P𝑓𝐴) → 𝑓Q)
4 breq1 4889 . . . . . . . . . . 11 (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
5 df-1p 10139 . . . . . . . . . . . . 13 1P = {𝑔𝑔 <Q 1Q}
65abeq2i 2894 . . . . . . . . . . . 12 (𝑔 ∈ 1P𝑔 <Q 1Q)
7 ltmnq 10129 . . . . . . . . . . . . 13 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
8 mulidnq 10120 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q 1Q) = 𝑓)
98breq2d 4898 . . . . . . . . . . . . 13 (𝑓Q → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
107, 9bitrd 271 . . . . . . . . . . . 12 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
116, 10syl5rbb 276 . . . . . . . . . . 11 (𝑓Q → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ 1P))
124, 11sylan9bbr 506 . . . . . . . . . 10 ((𝑓Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
133, 12sylan 575 . . . . . . . . 9 (((𝐴P𝑓𝐴) ∧ 𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
1413ex 403 . . . . . . . 8 ((𝐴P𝑓𝐴) → (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓𝑔 ∈ 1P)))
1514pm5.32rd 573 . . . . . . 7 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
1615exbidv 1964 . . . . . 6 ((𝐴P𝑓𝐴) → (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
172, 16syl5rbbr 278 . . . . 5 ((𝐴P𝑓𝐴) → (∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
181, 17syl5bb 275 . . . 4 ((𝐴P𝑓𝐴) → (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
1918rexbidva 3233 . . 3 (𝐴P → (∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
20 1pr 10172 . . . 4 1PP
21 df-mp 10141 . . . . 5 ·P = (𝑦P, 𝑧P ↦ {𝑤 ∣ ∃𝑢𝑦𝑣𝑧 𝑤 = (𝑢 ·Q 𝑣)})
22 mulclnq 10104 . . . . 5 ((𝑢Q𝑣Q) → (𝑢 ·Q 𝑣) ∈ Q)
2321, 22genpelv 10157 . . . 4 ((𝐴P ∧ 1PP) → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
2420, 23mpan2 681 . . 3 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
25 prnmax 10152 . . . . . 6 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 𝑥 <Q 𝑓)
26 ltrelnq 10083 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
2726brel 5414 . . . . . . . . . 10 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
28 vex 3400 . . . . . . . . . . . . . 14 𝑓 ∈ V
29 vex 3400 . . . . . . . . . . . . . 14 𝑥 ∈ V
30 fvex 6459 . . . . . . . . . . . . . 14 (*Q𝑓) ∈ V
31 mulcomnq 10110 . . . . . . . . . . . . . 14 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
32 mulassnq 10116 . . . . . . . . . . . . . 14 ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤))
3328, 29, 30, 31, 32caov12 7139 . . . . . . . . . . . . 13 (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q (𝑓 ·Q (*Q𝑓)))
34 recidnq 10122 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q (*Q𝑓)) = 1Q)
3534oveq2d 6938 . . . . . . . . . . . . 13 (𝑓Q → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
3633, 35syl5eq 2825 . . . . . . . . . . . 12 (𝑓Q → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
37 mulidnq 10120 . . . . . . . . . . . 12 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3836, 37sylan9eqr 2835 . . . . . . . . . . 11 ((𝑥Q𝑓Q) → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = 𝑥)
3938eqcomd 2783 . . . . . . . . . 10 ((𝑥Q𝑓Q) → 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
40 ovex 6954 . . . . . . . . . . 11 (𝑥 ·Q (*Q𝑓)) ∈ V
41 oveq2 6930 . . . . . . . . . . . 12 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑓 ·Q 𝑔) = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
4241eqeq2d 2787 . . . . . . . . . . 11 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑥 = (𝑓 ·Q 𝑔) ↔ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))))
4340, 42spcev 3501 . . . . . . . . . 10 (𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4427, 39, 433syl 18 . . . . . . . . 9 (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4544a1i 11 . . . . . . . 8 (𝑓𝐴 → (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4645ancld 546 . . . . . . 7 (𝑓𝐴 → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
4746reximia 3189 . . . . . 6 (∃𝑓𝐴 𝑥 <Q 𝑓 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4825, 47syl 17 . . . . 5 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4948ex 403 . . . 4 (𝐴P → (𝑥𝐴 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
50 prcdnq 10150 . . . . . 6 ((𝐴P𝑓𝐴) → (𝑥 <Q 𝑓𝑥𝐴))
5150adantrd 487 . . . . 5 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5251rexlimdva 3212 . . . 4 (𝐴P → (∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5349, 52impbid 204 . . 3 (𝐴P → (𝑥𝐴 ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
5419, 24, 533bitr4d 303 . 2 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ 𝑥𝐴))
5554eqrdv 2775 1 (𝐴P → (𝐴 ·P 1P) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wex 1823  wcel 2106  wrex 3090   class class class wbr 4886  cfv 6135  (class class class)co 6922  Qcnq 10009  1Qc1q 10010   ·Q cmq 10013  *Qcrq 10014   <Q cltq 10015  Pcnp 10016  1Pc1p 10017   ·P cmp 10019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-omul 7848  df-er 8026  df-ni 10029  df-pli 10030  df-mi 10031  df-lti 10032  df-plpq 10065  df-mpq 10066  df-ltpq 10067  df-enq 10068  df-nq 10069  df-erq 10070  df-plq 10071  df-mq 10072  df-1nq 10073  df-rq 10074  df-ltnq 10075  df-np 10138  df-1p 10139  df-mp 10141
This theorem is referenced by:  m1m1sr  10250  1idsr  10255
  Copyright terms: Public domain W3C validator