MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnepnf Structured version   Visualization version   GIF version

Theorem mnfnepnf 11168
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 11167 . 2 +∞ ≠ -∞
21necomi 2982 1 -∞ ≠ +∞
Colors of variables: wff setvar class
Syntax hints:  wne 2928  +∞cpnf 11143  -∞cmnf 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pow 5301  ax-un 7668  ax-cnex 11062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-ss 3914  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857  df-pnf 11148  df-mnf 11149  df-xr 11150
This theorem is referenced by:  xrnepnf  13017  xnegmnf  13109  xaddmnf1  13127  xaddmnf2  13128  mnfaddpnf  13130  xaddnepnf  13136  xmullem2  13164  xadddilem  13193  resup  13771
  Copyright terms: Public domain W3C validator