Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version |
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnfnepnf | ⊢ -∞ ≠ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnemnf 11076 | . 2 ⊢ +∞ ≠ -∞ | |
2 | 1 | necomi 2996 | 1 ⊢ -∞ ≠ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2941 +∞cpnf 11052 -∞cmnf 11053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-pow 5297 ax-un 7620 ax-cnex 10973 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3287 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-pw 4541 df-sn 4566 df-pr 4568 df-uni 4845 df-pnf 11057 df-mnf 11058 df-xr 11059 |
This theorem is referenced by: xrnepnf 12900 xnegmnf 12990 xaddmnf1 13008 xaddmnf2 13009 mnfaddpnf 13011 xaddnepnf 13017 xmullem2 13045 xadddilem 13074 resup 13633 |
Copyright terms: Public domain | W3C validator |