MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnepnf Structured version   Visualization version   GIF version

Theorem mnfnepnf 11206
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 11205 . 2 +∞ ≠ -∞
21necomi 2979 1 -∞ ≠ +∞
Colors of variables: wff setvar class
Syntax hints:  wne 2925  +∞cpnf 11181  -∞cmnf 11182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-pow 5315  ax-un 7691  ax-cnex 11100
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3403  df-v 3446  df-un 3916  df-in 3918  df-ss 3928  df-pw 4561  df-sn 4586  df-pr 4588  df-uni 4868  df-pnf 11186  df-mnf 11187  df-xr 11188
This theorem is referenced by:  xrnepnf  13054  xnegmnf  13146  xaddmnf1  13164  xaddmnf2  13165  mnfaddpnf  13167  xaddnepnf  13173  xmullem2  13201  xadddilem  13230  resup  13805
  Copyright terms: Public domain W3C validator