|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version | ||
| Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pnfnemnf 11317 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2994 | 1 ⊢ -∞ ≠ +∞ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ≠ wne 2939 +∞cpnf 11293 -∞cmnf 11294 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-pow 5364 ax-un 7756 ax-cnex 11212 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-un 3955 df-in 3957 df-ss 3967 df-pw 4601 df-sn 4626 df-pr 4628 df-uni 4907 df-pnf 11298 df-mnf 11299 df-xr 11300 | 
| This theorem is referenced by: xrnepnf 13161 xnegmnf 13253 xaddmnf1 13271 xaddmnf2 13272 mnfaddpnf 13274 xaddnepnf 13280 xmullem2 13308 xadddilem 13337 resup 13908 | 
| Copyright terms: Public domain | W3C validator |