![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version |
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnfnepnf | ⊢ -∞ ≠ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnemnf 11314 | . 2 ⊢ +∞ ≠ -∞ | |
2 | 1 | necomi 2993 | 1 ⊢ -∞ ≠ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 +∞cpnf 11290 -∞cmnf 11291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pow 5371 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-un 3968 df-in 3970 df-ss 3980 df-pw 4607 df-sn 4632 df-pr 4634 df-uni 4913 df-pnf 11295 df-mnf 11296 df-xr 11297 |
This theorem is referenced by: xrnepnf 13158 xnegmnf 13249 xaddmnf1 13267 xaddmnf2 13268 mnfaddpnf 13270 xaddnepnf 13276 xmullem2 13304 xadddilem 13333 resup 13904 |
Copyright terms: Public domain | W3C validator |