![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version |
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnfnepnf | ⊢ -∞ ≠ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnemnf 10502 | . 2 ⊢ +∞ ≠ -∞ | |
2 | 1 | necomi 3023 | 1 ⊢ -∞ ≠ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2969 +∞cpnf 10477 -∞cmnf 10478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 ax-sep 5064 ax-pow 5123 ax-un 7285 ax-cnex 10397 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-rex 3096 df-rab 3099 df-v 3419 df-un 3836 df-in 3838 df-ss 3845 df-pw 4427 df-sn 4445 df-pr 4447 df-uni 4718 df-pnf 10482 df-mnf 10483 df-xr 10484 |
This theorem is referenced by: xrnepnf 12336 xnegmnf 12426 xaddmnf1 12444 xaddmnf2 12445 mnfaddpnf 12447 xaddnepnf 12453 xmullem2 12480 xadddilem 12509 resup 13056 |
Copyright terms: Public domain | W3C validator |