![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version |
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnfnepnf | ⊢ -∞ ≠ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnemnf 11345 | . 2 ⊢ +∞ ≠ -∞ | |
2 | 1 | necomi 3001 | 1 ⊢ -∞ ≠ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 +∞cpnf 11321 -∞cmnf 11322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-pnf 11326 df-mnf 11327 df-xr 11328 |
This theorem is referenced by: xrnepnf 13181 xnegmnf 13272 xaddmnf1 13290 xaddmnf2 13291 mnfaddpnf 13293 xaddnepnf 13299 xmullem2 13327 xadddilem 13356 resup 13918 |
Copyright terms: Public domain | W3C validator |