| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version | ||
| Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnemnf 11205 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2979 | 1 ⊢ -∞ ≠ +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 +∞cpnf 11181 -∞cmnf 11182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pow 5315 ax-un 7691 ax-cnex 11100 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-un 3916 df-in 3918 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 df-pnf 11186 df-mnf 11187 df-xr 11188 |
| This theorem is referenced by: xrnepnf 13054 xnegmnf 13146 xaddmnf1 13164 xaddmnf2 13165 mnfaddpnf 13167 xaddnepnf 13173 xmullem2 13201 xadddilem 13230 resup 13805 |
| Copyright terms: Public domain | W3C validator |