MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnepnf Structured version   Visualization version   GIF version

Theorem mnfnepnf 11296
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 11295 . 2 +∞ ≠ -∞
21necomi 2987 1 -∞ ≠ +∞
Colors of variables: wff setvar class
Syntax hints:  wne 2933  +∞cpnf 11271  -∞cmnf 11272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-pow 5340  ax-un 7734  ax-cnex 11190
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-un 3936  df-in 3938  df-ss 3948  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4889  df-pnf 11276  df-mnf 11277  df-xr 11278
This theorem is referenced by:  xrnepnf  13139  xnegmnf  13231  xaddmnf1  13249  xaddmnf2  13250  mnfaddpnf  13252  xaddnepnf  13258  xmullem2  13286  xadddilem  13315  resup  13889
  Copyright terms: Public domain W3C validator