MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnepnf Structured version   Visualization version   GIF version

Theorem mnfnepnf 11015
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 11014 . 2 +∞ ≠ -∞
21necomi 2999 1 -∞ ≠ +∞
Colors of variables: wff setvar class
Syntax hints:  wne 2944  +∞cpnf 10990  -∞cmnf 10991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-pow 5291  ax-un 7579  ax-cnex 10911
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-rab 3074  df-v 3432  df-un 3896  df-in 3898  df-ss 3908  df-pw 4540  df-sn 4567  df-pr 4569  df-uni 4845  df-pnf 10995  df-mnf 10996  df-xr 10997
This theorem is referenced by:  xrnepnf  12836  xnegmnf  12926  xaddmnf1  12944  xaddmnf2  12945  mnfaddpnf  12947  xaddnepnf  12953  xmullem2  12981  xadddilem  13010  resup  13568
  Copyright terms: Public domain W3C validator