| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version | ||
| Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnemnf 11295 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2987 | 1 ⊢ -∞ ≠ +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2933 +∞cpnf 11271 -∞cmnf 11272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pow 5340 ax-un 7734 ax-cnex 11190 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-un 3936 df-in 3938 df-ss 3948 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4889 df-pnf 11276 df-mnf 11277 df-xr 11278 |
| This theorem is referenced by: xrnepnf 13139 xnegmnf 13231 xaddmnf1 13249 xaddmnf2 13250 mnfaddpnf 13252 xaddnepnf 13258 xmullem2 13286 xadddilem 13315 resup 13889 |
| Copyright terms: Public domain | W3C validator |