MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnepnf Structured version   Visualization version   GIF version

Theorem mnfnepnf 10503
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 10502 . 2 +∞ ≠ -∞
21necomi 3023 1 -∞ ≠ +∞
Colors of variables: wff setvar class
Syntax hints:  wne 2969  +∞cpnf 10477  -∞cmnf 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2752  ax-sep 5064  ax-pow 5123  ax-un 7285  ax-cnex 10397
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-rex 3096  df-rab 3099  df-v 3419  df-un 3836  df-in 3838  df-ss 3845  df-pw 4427  df-sn 4445  df-pr 4447  df-uni 4718  df-pnf 10482  df-mnf 10483  df-xr 10484
This theorem is referenced by:  xrnepnf  12336  xnegmnf  12426  xaddmnf1  12444  xaddmnf2  12445  mnfaddpnf  12447  xaddnepnf  12453  xmullem2  12480  xadddilem  12509  resup  13056
  Copyright terms: Public domain W3C validator