MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnepnf Structured version   Visualization version   GIF version

Theorem mnfnepnf 11077
Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 11076 . 2 +∞ ≠ -∞
21necomi 2996 1 -∞ ≠ +∞
Colors of variables: wff setvar class
Syntax hints:  wne 2941  +∞cpnf 11052  -∞cmnf 11053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-pow 5297  ax-un 7620  ax-cnex 10973
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-rab 3287  df-v 3439  df-un 3897  df-in 3899  df-ss 3909  df-pw 4541  df-sn 4566  df-pr 4568  df-uni 4845  df-pnf 11057  df-mnf 11058  df-xr 11059
This theorem is referenced by:  xrnepnf  12900  xnegmnf  12990  xaddmnf1  13008  xaddmnf2  13009  mnfaddpnf  13011  xaddnepnf  13017  xmullem2  13045  xadddilem  13074  resup  13633
  Copyright terms: Public domain W3C validator