| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version GIF version | ||
| Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnemnf 11167 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2982 | 1 ⊢ -∞ ≠ +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 +∞cpnf 11143 -∞cmnf 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 df-mnf 11149 df-xr 11150 |
| This theorem is referenced by: xrnepnf 13017 xnegmnf 13109 xaddmnf1 13127 xaddmnf2 13128 mnfaddpnf 13130 xaddnepnf 13136 xmullem2 13164 xadddilem 13193 resup 13771 |
| Copyright terms: Public domain | W3C validator |