![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddmnf2 | Structured version Visualization version GIF version |
Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddmnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11267 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | xaddval 13198 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))))) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))))) |
4 | mnfnepnf 11266 | . . . . 5 ⊢ -∞ ≠ +∞ | |
5 | ifnefalse 4532 | . . . . 5 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))) |
7 | eqid 2724 | . . . . 5 ⊢ -∞ = -∞ | |
8 | 7 | iftruei 4527 | . . . 4 ⊢ if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))) = if(𝐴 = +∞, 0, -∞) |
9 | 6, 8 | eqtri 2752 | . . 3 ⊢ if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(𝐴 = +∞, 0, -∞) |
10 | ifnefalse 4532 | . . 3 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, 0, -∞) = -∞) | |
11 | 9, 10 | eqtrid 2776 | . 2 ⊢ (𝐴 ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = -∞) |
12 | 3, 11 | sylan9eq 2784 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ifcif 4520 (class class class)co 7401 0cc0 11105 + caddc 11108 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 +𝑒 cxad 13086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-mulcl 11167 ax-i2m1 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-pnf 11246 df-mnf 11247 df-xr 11248 df-xadd 13089 |
This theorem is referenced by: xaddnepnf 13212 xaddcom 13215 xaddrid 13216 xnegdi 13223 xpncan 13226 xleadd1a 13228 xlt2add 13235 xadddilem 13269 xadddi2 13272 xrsnsgrp 21260 xaddeq0 32390 supxrgelem 44498 supxrge 44499 xrlexaddrp 44513 infleinflem2 44532 |
Copyright terms: Public domain | W3C validator |