| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddmnf2 | Structured version Visualization version GIF version | ||
| Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddmnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11238 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | xaddval 13190 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))))) |
| 4 | mnfnepnf 11237 | . . . . 5 ⊢ -∞ ≠ +∞ | |
| 5 | ifnefalse 4503 | . . . . 5 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))) |
| 7 | eqid 2730 | . . . . 5 ⊢ -∞ = -∞ | |
| 8 | 7 | iftruei 4498 | . . . 4 ⊢ if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))) = if(𝐴 = +∞, 0, -∞) |
| 9 | 6, 8 | eqtri 2753 | . . 3 ⊢ if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(𝐴 = +∞, 0, -∞) |
| 10 | ifnefalse 4503 | . . 3 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, 0, -∞) = -∞) | |
| 11 | 9, 10 | eqtrid 2777 | . 2 ⊢ (𝐴 ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = -∞) |
| 12 | 3, 11 | sylan9eq 2785 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ifcif 4491 (class class class)co 7390 0cc0 11075 + caddc 11078 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 +𝑒 cxad 13077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pnf 11217 df-mnf 11218 df-xr 11219 df-xadd 13080 |
| This theorem is referenced by: xaddnepnf 13204 xaddcom 13207 xaddrid 13208 xnegdi 13215 xpncan 13218 xleadd1a 13220 xlt2add 13227 xadddilem 13261 xadddi2 13264 xrsnsgrp 21326 xaddeq0 32683 supxrgelem 45340 supxrge 45341 xrlexaddrp 45355 infleinflem2 45374 |
| Copyright terms: Public domain | W3C validator |