Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xaddmnf2 | Structured version Visualization version GIF version |
Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddmnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11016 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | xaddval 12939 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))))) | |
3 | 1, 2 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))))) |
4 | mnfnepnf 11015 | . . . . 5 ⊢ -∞ ≠ +∞ | |
5 | ifnefalse 4476 | . . . . 5 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))) |
7 | eqid 2739 | . . . . 5 ⊢ -∞ = -∞ | |
8 | 7 | iftruei 4471 | . . . 4 ⊢ if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))) = if(𝐴 = +∞, 0, -∞) |
9 | 6, 8 | eqtri 2767 | . . 3 ⊢ if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(𝐴 = +∞, 0, -∞) |
10 | ifnefalse 4476 | . . 3 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, 0, -∞) = -∞) | |
11 | 9, 10 | eqtrid 2791 | . 2 ⊢ (𝐴 ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = -∞) |
12 | 3, 11 | sylan9eq 2799 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ifcif 4464 (class class class)co 7268 0cc0 10855 + caddc 10858 +∞cpnf 10990 -∞cmnf 10991 ℝ*cxr 10992 +𝑒 cxad 12828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-mulcl 10917 ax-i2m1 10923 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-pnf 10995 df-mnf 10996 df-xr 10997 df-xadd 12831 |
This theorem is referenced by: xaddnepnf 12953 xaddcom 12956 xaddid1 12957 xnegdi 12964 xpncan 12967 xleadd1a 12969 xlt2add 12976 xadddilem 13010 xadddi2 13013 xrsnsgrp 20615 xaddeq0 31055 supxrgelem 42830 supxrge 42831 xrlexaddrp 42845 infleinflem2 42864 |
Copyright terms: Public domain | W3C validator |