| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfaddpnf | Structured version Visualization version GIF version | ||
| Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| mnfaddpnf | ⊢ (-∞ +𝑒 +∞) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11231 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xaddval 13183 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) |
| 5 | mnfnepnf 11230 | . . . 4 ⊢ -∞ ≠ +∞ | |
| 6 | ifnefalse 4500 | . . . 4 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) |
| 8 | eqid 2729 | . . . . 5 ⊢ -∞ = -∞ | |
| 9 | 8 | iftruei 4495 | . . . 4 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞) |
| 10 | eqid 2729 | . . . . 5 ⊢ +∞ = +∞ | |
| 11 | 10 | iftruei 4495 | . . . 4 ⊢ if(+∞ = +∞, 0, -∞) = 0 |
| 12 | 9, 11 | eqtri 2752 | . . 3 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0 |
| 13 | 7, 12 | eqtri 2752 | . 2 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0 |
| 14 | 4, 13 | eqtri 2752 | 1 ⊢ (-∞ +𝑒 +∞) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4488 (class class class)co 7387 0cc0 11068 + caddc 11071 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 +𝑒 cxad 13070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pnf 11210 df-mnf 11211 df-xr 11212 df-xadd 13073 |
| This theorem is referenced by: xnegid 13198 xaddcom 13200 xnegdi 13208 xsubge0 13221 xadddilem 13254 xrsnsgrp 21319 |
| Copyright terms: Public domain | W3C validator |