MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfaddpnf Structured version   Visualization version   GIF version

Theorem mnfaddpnf 13293
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mnfaddpnf (-∞ +𝑒 +∞) = 0

Proof of Theorem mnfaddpnf
StepHypRef Expression
1 mnfxr 11347 . . 3 -∞ ∈ ℝ*
2 pnfxr 11344 . . 3 +∞ ∈ ℝ*
3 xaddval 13285 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))))
41, 2, 3mp2an 691 . 2 (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))
5 mnfnepnf 11346 . . . 4 -∞ ≠ +∞
6 ifnefalse 4560 . . . 4 (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))
75, 6ax-mp 5 . . 3 if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))
8 eqid 2740 . . . . 5 -∞ = -∞
98iftruei 4555 . . . 4 if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞)
10 eqid 2740 . . . . 5 +∞ = +∞
1110iftruei 4555 . . . 4 if(+∞ = +∞, 0, -∞) = 0
129, 11eqtri 2768 . . 3 if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0
137, 12eqtri 2768 . 2 if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0
144, 13eqtri 2768 1 (-∞ +𝑒 +∞) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wne 2946  ifcif 4548  (class class class)co 7448  0cc0 11184   + caddc 11187  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   +𝑒 cxad 13173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-i2m1 11252
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-pnf 11326  df-mnf 11327  df-xr 11328  df-xadd 13176
This theorem is referenced by:  xnegid  13300  xaddcom  13302  xnegdi  13310  xsubge0  13323  xadddilem  13356  xrsnsgrp  21443
  Copyright terms: Public domain W3C validator