MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfaddpnf Structured version   Visualization version   GIF version

Theorem mnfaddpnf 13214
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mnfaddpnf (-∞ +𝑒 +∞) = 0

Proof of Theorem mnfaddpnf
StepHypRef Expression
1 mnfxr 11275 . . 3 -∞ ∈ ℝ*
2 pnfxr 11272 . . 3 +∞ ∈ ℝ*
3 xaddval 13206 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))))
41, 2, 3mp2an 688 . 2 (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))
5 mnfnepnf 11274 . . . 4 -∞ ≠ +∞
6 ifnefalse 4539 . . . 4 (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))
75, 6ax-mp 5 . . 3 if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))
8 eqid 2730 . . . . 5 -∞ = -∞
98iftruei 4534 . . . 4 if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞)
10 eqid 2730 . . . . 5 +∞ = +∞
1110iftruei 4534 . . . 4 if(+∞ = +∞, 0, -∞) = 0
129, 11eqtri 2758 . . 3 if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0
137, 12eqtri 2758 . 2 if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0
144, 13eqtri 2758 1 (-∞ +𝑒 +∞) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  wne 2938  ifcif 4527  (class class class)co 7411  0cc0 11112   + caddc 11115  +∞cpnf 11249  -∞cmnf 11250  *cxr 11251   +𝑒 cxad 13094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-mulcl 11174  ax-i2m1 11180
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-pnf 11254  df-mnf 11255  df-xr 11256  df-xadd 13097
This theorem is referenced by:  xnegid  13221  xaddcom  13223  xnegdi  13231  xsubge0  13244  xadddilem  13277  xrsnsgrp  21181
  Copyright terms: Public domain W3C validator