| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfaddpnf | Structured version Visualization version GIF version | ||
| Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| mnfaddpnf | ⊢ (-∞ +𝑒 +∞) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11300 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11297 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xaddval 13247 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) |
| 5 | mnfnepnf 11299 | . . . 4 ⊢ -∞ ≠ +∞ | |
| 6 | ifnefalse 4517 | . . . 4 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) |
| 8 | eqid 2734 | . . . . 5 ⊢ -∞ = -∞ | |
| 9 | 8 | iftruei 4512 | . . . 4 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞) |
| 10 | eqid 2734 | . . . . 5 ⊢ +∞ = +∞ | |
| 11 | 10 | iftruei 4512 | . . . 4 ⊢ if(+∞ = +∞, 0, -∞) = 0 |
| 12 | 9, 11 | eqtri 2757 | . . 3 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0 |
| 13 | 7, 12 | eqtri 2757 | . 2 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0 |
| 14 | 4, 13 | eqtri 2757 | 1 ⊢ (-∞ +𝑒 +∞) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ifcif 4505 (class class class)co 7413 0cc0 11137 + caddc 11140 +∞cpnf 11274 -∞cmnf 11275 ℝ*cxr 11276 +𝑒 cxad 13134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-mulcl 11199 ax-i2m1 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-pnf 11279 df-mnf 11280 df-xr 11281 df-xadd 13137 |
| This theorem is referenced by: xnegid 13262 xaddcom 13264 xnegdi 13272 xsubge0 13285 xadddilem 13318 xrsnsgrp 21382 |
| Copyright terms: Public domain | W3C validator |