| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfaddpnf | Structured version Visualization version GIF version | ||
| Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| mnfaddpnf | ⊢ (-∞ +𝑒 +∞) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11238 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11235 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xaddval 13190 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) |
| 5 | mnfnepnf 11237 | . . . 4 ⊢ -∞ ≠ +∞ | |
| 6 | ifnefalse 4503 | . . . 4 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) |
| 8 | eqid 2730 | . . . . 5 ⊢ -∞ = -∞ | |
| 9 | 8 | iftruei 4498 | . . . 4 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞) |
| 10 | eqid 2730 | . . . . 5 ⊢ +∞ = +∞ | |
| 11 | 10 | iftruei 4498 | . . . 4 ⊢ if(+∞ = +∞, 0, -∞) = 0 |
| 12 | 9, 11 | eqtri 2753 | . . 3 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0 |
| 13 | 7, 12 | eqtri 2753 | . 2 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0 |
| 14 | 4, 13 | eqtri 2753 | 1 ⊢ (-∞ +𝑒 +∞) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ifcif 4491 (class class class)co 7390 0cc0 11075 + caddc 11078 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 +𝑒 cxad 13077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pnf 11217 df-mnf 11218 df-xr 11219 df-xadd 13080 |
| This theorem is referenced by: xnegid 13205 xaddcom 13207 xnegdi 13215 xsubge0 13228 xadddilem 13261 xrsnsgrp 21326 |
| Copyright terms: Public domain | W3C validator |