Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfaddpnf | Structured version Visualization version GIF version |
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
mnfaddpnf | ⊢ (-∞ +𝑒 +∞) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11042 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | pnfxr 11039 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xaddval 12967 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) |
5 | mnfnepnf 11041 | . . . 4 ⊢ -∞ ≠ +∞ | |
6 | ifnefalse 4471 | . . . 4 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) |
8 | eqid 2738 | . . . . 5 ⊢ -∞ = -∞ | |
9 | 8 | iftruei 4466 | . . . 4 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞) |
10 | eqid 2738 | . . . . 5 ⊢ +∞ = +∞ | |
11 | 10 | iftruei 4466 | . . . 4 ⊢ if(+∞ = +∞, 0, -∞) = 0 |
12 | 9, 11 | eqtri 2766 | . . 3 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0 |
13 | 7, 12 | eqtri 2766 | . 2 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0 |
14 | 4, 13 | eqtri 2766 | 1 ⊢ (-∞ +𝑒 +∞) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ifcif 4459 (class class class)co 7267 0cc0 10881 + caddc 10884 +∞cpnf 11016 -∞cmnf 11017 ℝ*cxr 11018 +𝑒 cxad 12856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-mulcl 10943 ax-i2m1 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-pnf 11021 df-mnf 11022 df-xr 11023 df-xadd 12859 |
This theorem is referenced by: xnegid 12982 xaddcom 12984 xnegdi 12992 xsubge0 13005 xadddilem 13038 xrsnsgrp 20644 |
Copyright terms: Public domain | W3C validator |