Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressneu | Structured version Visualization version GIF version |
Description: There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6361. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6650. (Contributed by AV, 7-Sep-2022.) |
Ref | Expression |
---|---|
funressneu | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1195 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴 ∈ 𝑉) | |
2 | simp1r 1196 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐵 ∈ 𝑊) | |
3 | simp3 1136 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴𝐹𝐵) | |
4 | breldmg 5750 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) |
6 | eldmg 5739 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦)) | |
7 | 6 | ibi 270 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦) |
8 | 5, 7 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦) |
9 | simpl 487 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
10 | 9 | anim1i 618 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴}))) |
11 | 10 | 3adant3 1130 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴}))) |
12 | funressnmo 43997 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦) |
14 | moeu 2603 | . . 3 ⊢ (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) | |
15 | 13, 14 | sylib 221 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) |
16 | 8, 15 | mpd 15 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 ∃wex 1782 ∈ wcel 2112 ∃*wmo 2556 ∃!weu 2588 {csn 4523 class class class wbr 5033 dom cdm 5525 ↾ cres 5527 Fun wfun 6330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-res 5537 df-fun 6338 |
This theorem is referenced by: funressnbrafv2 44161 |
Copyright terms: Public domain | W3C validator |