Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressneu Structured version   Visualization version   GIF version

Theorem funressneu 47032
Description: There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6571. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6876. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
funressneu (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑉
Allowed substitution hints:   𝐵(𝑦)   𝑊(𝑦)

Proof of Theorem funressneu
StepHypRef Expression
1 simp1l 1197 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴𝑉)
2 simp1r 1198 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐵𝑊)
3 simp3 1138 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴𝐹𝐵)
4 breldmg 5900 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
51, 2, 3, 4syl3anc 1372 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
6 eldmg 5889 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦))
76ibi 267 . . 3 (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦)
85, 7syl 17 . 2 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦)
9 simpl 482 . . . . . 6 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
109anim1i 615 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})))
11103adant3 1132 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})))
12 funressnmo 47031 . . . 4 ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
1311, 12syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦)
14 moeu 2581 . . 3 (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
1513, 14sylib 218 . 2 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
168, 15mpd 15 1 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1778  wcel 2107  ∃*wmo 2536  ∃!weu 2566  {csn 4606   class class class wbr 5123  dom cdm 5665  cres 5667  Fun wfun 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-fun 6543
This theorem is referenced by:  funressnbrafv2  47229
  Copyright terms: Public domain W3C validator