![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressneu | Structured version Visualization version GIF version |
Description: There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6609. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6916. (Contributed by AV, 7-Sep-2022.) |
Ref | Expression |
---|---|
funressneu | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1197 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴 ∈ 𝑉) | |
2 | simp1r 1198 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐵 ∈ 𝑊) | |
3 | simp3 1138 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴𝐹𝐵) | |
4 | breldmg 5940 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) |
6 | eldmg 5929 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦)) | |
7 | 6 | ibi 267 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦) |
8 | 5, 7 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦) |
9 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
10 | 9 | anim1i 614 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴}))) |
11 | 10 | 3adant3 1132 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴}))) |
12 | funressnmo 46947 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦) |
14 | moeu 2580 | . . 3 ⊢ (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) | |
15 | 13, 14 | sylib 218 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) |
16 | 8, 15 | mpd 15 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∃wex 1777 ∈ wcel 2103 ∃*wmo 2535 ∃!weu 2565 {csn 4654 class class class wbr 5176 dom cdm 5706 ↾ cres 5708 Fun wfun 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 ax-sep 5327 ax-nul 5334 ax-pr 5457 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3064 df-rex 3073 df-rab 3440 df-v 3486 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4354 df-if 4555 df-sn 4655 df-pr 4657 df-op 4661 df-br 5177 df-opab 5239 df-id 5604 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-res 5718 df-fun 6581 |
This theorem is referenced by: funressnbrafv2 47145 |
Copyright terms: Public domain | W3C validator |