Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressneu Structured version   Visualization version   GIF version

Theorem funressneu 43289
Description: There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6382. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6664. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
funressneu (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑉
Allowed substitution hints:   𝐵(𝑦)   𝑊(𝑦)

Proof of Theorem funressneu
StepHypRef Expression
1 simp1l 1193 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴𝑉)
2 simp1r 1194 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐵𝑊)
3 simp3 1134 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴𝐹𝐵)
4 breldmg 5780 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
51, 2, 3, 4syl3anc 1367 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
6 eldmg 5769 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦))
76ibi 269 . . 3 (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦)
85, 7syl 17 . 2 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦)
9 simpl 485 . . . . . 6 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
109anim1i 616 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})))
11103adant3 1128 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})))
12 funressnmo 43288 . . . 4 ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
1311, 12syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦)
14 moeu 2668 . . 3 (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
1513, 14sylib 220 . 2 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
168, 15mpd 15 1 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wex 1780  wcel 2114  ∃*wmo 2620  ∃!weu 2653  {csn 4569   class class class wbr 5068  dom cdm 5557  cres 5559  Fun wfun 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-res 5569  df-fun 6359
This theorem is referenced by:  funressnbrafv2  43450
  Copyright terms: Public domain W3C validator