MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeu Structured version   Visualization version   GIF version

Theorem funeu 6541
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funeu ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem funeu
StepHypRef Expression
1 funrel 6533 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 5908 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
31, 2sylan 580 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
4 eldmg 5862 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦))
54ibi 267 . . 3 (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦)
63, 5syl 17 . 2 ((Fun 𝐹𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦)
7 funmo 6531 . . . 4 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
87adantr 480 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦)
9 moeu 2576 . . 3 (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
108, 9sylib 218 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
116, 10mpd 15 1 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561   class class class wbr 5107  dom cdm 5638  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-fun 6513
This theorem is referenced by:  funeu2  6542  funbrfv  6909  frege124d  43750  funbrafv2  47248
  Copyright terms: Public domain W3C validator