MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeu Structured version   Visualization version   GIF version

Theorem funeu 6514
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funeu ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem funeu
StepHypRef Expression
1 funrel 6506 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 5890 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
31, 2sylan 580 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
4 eldmg 5844 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦))
54ibi 267 . . 3 (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦)
63, 5syl 17 . 2 ((Fun 𝐹𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦)
7 funmo 6505 . . . 4 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
87adantr 480 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦)
9 moeu 2580 . . 3 (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
108, 9sylib 218 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
116, 10mpd 15 1 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2113  ∃*wmo 2535  ∃!weu 2565   class class class wbr 5095  dom cdm 5621  Rel wrel 5626  Fun wfun 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-fun 6491
This theorem is referenced by:  funeu2  6515  funbrfv  6879  frege124d  43918  funbrafv2  47409
  Copyright terms: Public domain W3C validator