MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeu Structured version   Visualization version   GIF version

Theorem funeu 6570
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funeu ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem funeu
StepHypRef Expression
1 funrel 6562 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 5941 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
31, 2sylan 580 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
4 eldmg 5896 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦))
54ibi 266 . . 3 (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦)
63, 5syl 17 . 2 ((Fun 𝐹𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦)
7 funmo 6560 . . . 4 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
87adantr 481 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦)
9 moeu 2577 . . 3 (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
108, 9sylib 217 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
116, 10mpd 15 1 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781  wcel 2106  ∃*wmo 2532  ∃!weu 2562   class class class wbr 5147  dom cdm 5675  Rel wrel 5680  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-fun 6542
This theorem is referenced by:  funeu2  6571  funbrfv  6939  frege124d  42497  funbrafv2  45941
  Copyright terms: Public domain W3C validator