Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mopre Structured version   Visualization version   GIF version

Theorem mopre 38494
Description: There is at most one predecessor of 𝑁. (Contributed by Peter Mazsa, 12-Jan-2026.)
Assertion
Ref Expression
mopre ∃*𝑚 suc 𝑚 = 𝑁
Distinct variable group:   𝑚,𝑁

Proof of Theorem mopre
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2753 . . . 4 ((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → suc 𝑚 = suc 𝑙)
2 suc11reg 9509 . . . 4 (suc 𝑚 = suc 𝑙𝑚 = 𝑙)
31, 2sylib 218 . . 3 ((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → 𝑚 = 𝑙)
43gen2 1797 . 2 𝑚𝑙((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → 𝑚 = 𝑙)
5 suceq 6374 . . . 4 (𝑚 = 𝑙 → suc 𝑚 = suc 𝑙)
65eqeq1d 2733 . . 3 (𝑚 = 𝑙 → (suc 𝑚 = 𝑁 ↔ suc 𝑙 = 𝑁))
76mo4 2561 . 2 (∃*𝑚 suc 𝑚 = 𝑁 ↔ ∀𝑚𝑙((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → 𝑚 = 𝑙))
84, 7mpbir 231 1 ∃*𝑚 suc 𝑚 = 𝑁
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  ∃*wmo 2533  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-suc 6312
This theorem is referenced by:  exeupre2  38495
  Copyright terms: Public domain W3C validator