| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mopre | Structured version Visualization version GIF version | ||
| Description: There is at most one predecessor of 𝑁. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| Ref | Expression |
|---|---|
| mopre | ⊢ ∃*𝑚 suc 𝑚 = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2753 | . . . 4 ⊢ ((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → suc 𝑚 = suc 𝑙) | |
| 2 | suc11reg 9509 | . . . 4 ⊢ (suc 𝑚 = suc 𝑙 ↔ 𝑚 = 𝑙) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ ((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → 𝑚 = 𝑙) |
| 4 | 3 | gen2 1797 | . 2 ⊢ ∀𝑚∀𝑙((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → 𝑚 = 𝑙) |
| 5 | suceq 6374 | . . . 4 ⊢ (𝑚 = 𝑙 → suc 𝑚 = suc 𝑙) | |
| 6 | 5 | eqeq1d 2733 | . . 3 ⊢ (𝑚 = 𝑙 → (suc 𝑚 = 𝑁 ↔ suc 𝑙 = 𝑁)) |
| 7 | 6 | mo4 2561 | . 2 ⊢ (∃*𝑚 suc 𝑚 = 𝑁 ↔ ∀𝑚∀𝑙((suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁) → 𝑚 = 𝑙)) |
| 8 | 4, 7 | mpbir 231 | 1 ⊢ ∃*𝑚 suc 𝑚 = 𝑁 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃*wmo 2533 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 df-suc 6312 |
| This theorem is referenced by: exeupre2 38495 |
| Copyright terms: Public domain | W3C validator |