Step | Hyp | Ref
| Expression |
1 | | refsum2cnlem1.4 |
. . 3
β’
β²π₯π |
2 | | refsum2cnlem1.5 |
. . . . . . . . 9
β’ π΄ = (π β {1, 2} β¦ if(π = 1, πΉ, πΊ)) |
3 | | nfmpt1 5255 |
. . . . . . . . 9
β’
β²π(π β {1, 2} β¦ if(π = 1, πΉ, πΊ)) |
4 | 2, 3 | nfcxfr 2901 |
. . . . . . . 8
β’
β²ππ΄ |
5 | | nfcv 2903 |
. . . . . . . 8
β’
β²π1 |
6 | 4, 5 | nffv 6898 |
. . . . . . 7
β’
β²π(π΄β1) |
7 | | nfcv 2903 |
. . . . . . 7
β’
β²ππ₯ |
8 | 6, 7 | nffv 6898 |
. . . . . 6
β’
β²π((π΄β1)βπ₯) |
9 | 8 | a1i 11 |
. . . . 5
β’ ((π β§ π₯ β π) β β²π((π΄β1)βπ₯)) |
10 | | nfcv 2903 |
. . . . . . . 8
β’
β²π2 |
11 | 4, 10 | nffv 6898 |
. . . . . . 7
β’
β²π(π΄β2) |
12 | 11, 7 | nffv 6898 |
. . . . . 6
β’
β²π((π΄β2)βπ₯) |
13 | 12 | a1i 11 |
. . . . 5
β’ ((π β§ π₯ β π) β β²π((π΄β2)βπ₯)) |
14 | | 1cnd 11205 |
. . . . 5
β’ ((π β§ π₯ β π) β 1 β β) |
15 | | 2cnd 12286 |
. . . . 5
β’ ((π β§ π₯ β π) β 2 β β) |
16 | | 1ex 11206 |
. . . . . . . . . . 11
β’ 1 β
V |
17 | 16 | prid1 4765 |
. . . . . . . . . 10
β’ 1 β
{1, 2} |
18 | | refsum2cnlem1.8 |
. . . . . . . . . . 11
β’ (π β πΉ β (π½ Cn πΎ)) |
19 | | refsum2cnlem1.9 |
. . . . . . . . . . 11
β’ (π β πΊ β (π½ Cn πΎ)) |
20 | 18, 19 | ifcld 4573 |
. . . . . . . . . 10
β’ (π β if(1 = 1, πΉ, πΊ) β (π½ Cn πΎ)) |
21 | | eqeq1 2736 |
. . . . . . . . . . . 12
β’ (π = 1 β (π = 1 β 1 = 1)) |
22 | 21 | ifbid 4550 |
. . . . . . . . . . 11
β’ (π = 1 β if(π = 1, πΉ, πΊ) = if(1 = 1, πΉ, πΊ)) |
23 | 22, 2 | fvmptg 6993 |
. . . . . . . . . 10
β’ ((1
β {1, 2} β§ if(1 = 1, πΉ, πΊ) β (π½ Cn πΎ)) β (π΄β1) = if(1 = 1, πΉ, πΊ)) |
24 | 17, 20, 23 | sylancr 587 |
. . . . . . . . 9
β’ (π β (π΄β1) = if(1 = 1, πΉ, πΊ)) |
25 | | eqid 2732 |
. . . . . . . . . 10
β’ 1 =
1 |
26 | 25 | iftruei 4534 |
. . . . . . . . 9
β’ if(1 = 1,
πΉ, πΊ) = πΉ |
27 | 24, 26 | eqtrdi 2788 |
. . . . . . . 8
β’ (π β (π΄β1) = πΉ) |
28 | 27 | adantr 481 |
. . . . . . 7
β’ ((π β§ π₯ β π) β (π΄β1) = πΉ) |
29 | 28 | fveq1d 6890 |
. . . . . 6
β’ ((π β§ π₯ β π) β ((π΄β1)βπ₯) = (πΉβπ₯)) |
30 | | eqid 2732 |
. . . . . . . . . . 11
β’ βͺ π½ =
βͺ π½ |
31 | | eqid 2732 |
. . . . . . . . . . 11
β’ βͺ πΎ =
βͺ πΎ |
32 | 30, 31 | cnf 22741 |
. . . . . . . . . 10
β’ (πΉ β (π½ Cn πΎ) β πΉ:βͺ π½βΆβͺ πΎ) |
33 | 18, 32 | syl 17 |
. . . . . . . . 9
β’ (π β πΉ:βͺ π½βΆβͺ πΎ) |
34 | | refsum2cnlem1.7 |
. . . . . . . . . . . 12
β’ (π β π½ β (TopOnβπ)) |
35 | | toponuni 22407 |
. . . . . . . . . . . 12
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . 11
β’ (π β π = βͺ π½) |
37 | 36 | eqcomd 2738 |
. . . . . . . . . 10
β’ (π β βͺ π½ =
π) |
38 | | refsum2cnlem1.6 |
. . . . . . . . . . . . 13
β’ πΎ = (topGenβran
(,)) |
39 | 38 | unieqi 4920 |
. . . . . . . . . . . 12
β’ βͺ πΎ =
βͺ (topGenβran (,)) |
40 | | uniretop 24270 |
. . . . . . . . . . . 12
β’ β =
βͺ (topGenβran (,)) |
41 | 39, 40 | eqtr4i 2763 |
. . . . . . . . . . 11
β’ βͺ πΎ =
β |
42 | 41 | a1i 11 |
. . . . . . . . . 10
β’ (π β βͺ πΎ =
β) |
43 | 37, 42 | feq23d 6709 |
. . . . . . . . 9
β’ (π β (πΉ:βͺ π½βΆβͺ πΎ
β πΉ:πβΆβ)) |
44 | 33, 43 | mpbid 231 |
. . . . . . . 8
β’ (π β πΉ:πβΆβ) |
45 | 44 | anim1i 615 |
. . . . . . 7
β’ ((π β§ π₯ β π) β (πΉ:πβΆβ β§ π₯ β π)) |
46 | | ffvelcdm 7080 |
. . . . . . 7
β’ ((πΉ:πβΆβ β§ π₯ β π) β (πΉβπ₯) β β) |
47 | | recn 11196 |
. . . . . . 7
β’ ((πΉβπ₯) β β β (πΉβπ₯) β β) |
48 | 45, 46, 47 | 3syl 18 |
. . . . . 6
β’ ((π β§ π₯ β π) β (πΉβπ₯) β β) |
49 | 29, 48 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ π₯ β π) β ((π΄β1)βπ₯) β β) |
50 | | 2ex 12285 |
. . . . . . . . . . 11
β’ 2 β
V |
51 | 50 | prid2 4766 |
. . . . . . . . . 10
β’ 2 β
{1, 2} |
52 | 18, 19 | ifcld 4573 |
. . . . . . . . . 10
β’ (π β if(2 = 1, πΉ, πΊ) β (π½ Cn πΎ)) |
53 | | eqeq1 2736 |
. . . . . . . . . . . 12
β’ (π = 2 β (π = 1 β 2 = 1)) |
54 | 53 | ifbid 4550 |
. . . . . . . . . . 11
β’ (π = 2 β if(π = 1, πΉ, πΊ) = if(2 = 1, πΉ, πΊ)) |
55 | 54, 2 | fvmptg 6993 |
. . . . . . . . . 10
β’ ((2
β {1, 2} β§ if(2 = 1, πΉ, πΊ) β (π½ Cn πΎ)) β (π΄β2) = if(2 = 1, πΉ, πΊ)) |
56 | 51, 52, 55 | sylancr 587 |
. . . . . . . . 9
β’ (π β (π΄β2) = if(2 = 1, πΉ, πΊ)) |
57 | | 1ne2 12416 |
. . . . . . . . . . 11
β’ 1 β
2 |
58 | 57 | nesymi 2998 |
. . . . . . . . . 10
β’ Β¬ 2
= 1 |
59 | 58 | iffalsei 4537 |
. . . . . . . . 9
β’ if(2 = 1,
πΉ, πΊ) = πΊ |
60 | 56, 59 | eqtrdi 2788 |
. . . . . . . 8
β’ (π β (π΄β2) = πΊ) |
61 | 60 | adantr 481 |
. . . . . . 7
β’ ((π β§ π₯ β π) β (π΄β2) = πΊ) |
62 | 61 | fveq1d 6890 |
. . . . . 6
β’ ((π β§ π₯ β π) β ((π΄β2)βπ₯) = (πΊβπ₯)) |
63 | 30, 31 | cnf 22741 |
. . . . . . . . . 10
β’ (πΊ β (π½ Cn πΎ) β πΊ:βͺ π½βΆβͺ πΎ) |
64 | 19, 63 | syl 17 |
. . . . . . . . 9
β’ (π β πΊ:βͺ π½βΆβͺ πΎ) |
65 | 37, 42 | feq23d 6709 |
. . . . . . . . 9
β’ (π β (πΊ:βͺ π½βΆβͺ πΎ
β πΊ:πβΆβ)) |
66 | 64, 65 | mpbid 231 |
. . . . . . . 8
β’ (π β πΊ:πβΆβ) |
67 | 66 | anim1i 615 |
. . . . . . 7
β’ ((π β§ π₯ β π) β (πΊ:πβΆβ β§ π₯ β π)) |
68 | | ffvelcdm 7080 |
. . . . . . 7
β’ ((πΊ:πβΆβ β§ π₯ β π) β (πΊβπ₯) β β) |
69 | | recn 11196 |
. . . . . . 7
β’ ((πΊβπ₯) β β β (πΊβπ₯) β β) |
70 | 67, 68, 69 | 3syl 18 |
. . . . . 6
β’ ((π β§ π₯ β π) β (πΊβπ₯) β β) |
71 | 62, 70 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ π₯ β π) β ((π΄β2)βπ₯) β β) |
72 | 57 | a1i 11 |
. . . . 5
β’ ((π β§ π₯ β π) β 1 β 2) |
73 | | fveq2 6888 |
. . . . . . 7
β’ (π = 1 β (π΄βπ) = (π΄β1)) |
74 | 73 | fveq1d 6890 |
. . . . . 6
β’ (π = 1 β ((π΄βπ)βπ₯) = ((π΄β1)βπ₯)) |
75 | 74 | adantl 482 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π = 1) β ((π΄βπ)βπ₯) = ((π΄β1)βπ₯)) |
76 | | fveq2 6888 |
. . . . . . 7
β’ (π = 2 β (π΄βπ) = (π΄β2)) |
77 | 76 | fveq1d 6890 |
. . . . . 6
β’ (π = 2 β ((π΄βπ)βπ₯) = ((π΄β2)βπ₯)) |
78 | 77 | adantl 482 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π = 2) β ((π΄βπ)βπ₯) = ((π΄β2)βπ₯)) |
79 | 9, 13, 14, 15, 49, 71, 72, 75, 78 | sumpair 43704 |
. . . 4
β’ ((π β§ π₯ β π) β Ξ£π β {1, 2} ((π΄βπ)βπ₯) = (((π΄β1)βπ₯) + ((π΄β2)βπ₯))) |
80 | 29, 62 | oveq12d 7423 |
. . . 4
β’ ((π β§ π₯ β π) β (((π΄β1)βπ₯) + ((π΄β2)βπ₯)) = ((πΉβπ₯) + (πΊβπ₯))) |
81 | 79, 80 | eqtrd 2772 |
. . 3
β’ ((π β§ π₯ β π) β Ξ£π β {1, 2} ((π΄βπ)βπ₯) = ((πΉβπ₯) + (πΊβπ₯))) |
82 | 1, 81 | mpteq2da 5245 |
. 2
β’ (π β (π₯ β π β¦ Ξ£π β {1, 2} ((π΄βπ)βπ₯)) = (π₯ β π β¦ ((πΉβπ₯) + (πΊβπ₯)))) |
83 | | prfi 9318 |
. . . 4
β’ {1, 2}
β Fin |
84 | 83 | a1i 11 |
. . 3
β’ (π β {1, 2} β
Fin) |
85 | | eqid 2732 |
. . . . . . . . . 10
β’ π = π |
86 | 85 | ax-gen 1797 |
. . . . . . . . 9
β’
βπ₯ π = π |
87 | | refsum2cnlem1.1 |
. . . . . . . . . . . 12
β’
β²π₯π΄ |
88 | | nfcv 2903 |
. . . . . . . . . . . 12
β’
β²π₯π |
89 | 87, 88 | nffv 6898 |
. . . . . . . . . . 11
β’
β²π₯(π΄βπ) |
90 | | refsum2cnlem1.2 |
. . . . . . . . . . 11
β’
β²π₯πΉ |
91 | 89, 90 | nfeq 2916 |
. . . . . . . . . 10
β’
β²π₯(π΄βπ) = πΉ |
92 | | fveq1 6887 |
. . . . . . . . . . 11
β’ ((π΄βπ) = πΉ β ((π΄βπ)βπ₯) = (πΉβπ₯)) |
93 | 92 | a1d 25 |
. . . . . . . . . 10
β’ ((π΄βπ) = πΉ β (π₯ β π β ((π΄βπ)βπ₯) = (πΉβπ₯))) |
94 | 91, 93 | ralrimi 3254 |
. . . . . . . . 9
β’ ((π΄βπ) = πΉ β βπ₯ β π ((π΄βπ)βπ₯) = (πΉβπ₯)) |
95 | | mpteq12f 5235 |
. . . . . . . . 9
β’
((βπ₯ π = π β§ βπ₯ β π ((π΄βπ)βπ₯) = (πΉβπ₯)) β (π₯ β π β¦ ((π΄βπ)βπ₯)) = (π₯ β π β¦ (πΉβπ₯))) |
96 | 86, 94, 95 | sylancr 587 |
. . . . . . . 8
β’ ((π΄βπ) = πΉ β (π₯ β π β¦ ((π΄βπ)βπ₯)) = (π₯ β π β¦ (πΉβπ₯))) |
97 | 96 | adantl 482 |
. . . . . . 7
β’ ((π β§ (π΄βπ) = πΉ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) = (π₯ β π β¦ (πΉβπ₯))) |
98 | | retopon 24271 |
. . . . . . . . . . . . 13
β’
(topGenβran (,)) β (TopOnββ) |
99 | 38, 98 | eqeltri 2829 |
. . . . . . . . . . . 12
β’ πΎ β
(TopOnββ) |
100 | 99 | a1i 11 |
. . . . . . . . . . 11
β’ (π β πΎ β
(TopOnββ)) |
101 | | cnf2 22744 |
. . . . . . . . . . 11
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnββ) β§ πΉ β (π½ Cn πΎ)) β πΉ:πβΆβ) |
102 | 34, 100, 18, 101 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β πΉ:πβΆβ) |
103 | 102 | ffnd 6715 |
. . . . . . . . 9
β’ (π β πΉ Fn π) |
104 | 90 | dffn5f 6960 |
. . . . . . . . 9
β’ (πΉ Fn π β πΉ = (π₯ β π β¦ (πΉβπ₯))) |
105 | 103, 104 | sylib 217 |
. . . . . . . 8
β’ (π β πΉ = (π₯ β π β¦ (πΉβπ₯))) |
106 | 105 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π΄βπ) = πΉ) β πΉ = (π₯ β π β¦ (πΉβπ₯))) |
107 | 97, 106 | eqtr4d 2775 |
. . . . . 6
β’ ((π β§ (π΄βπ) = πΉ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) = πΉ) |
108 | 18 | adantr 481 |
. . . . . 6
β’ ((π β§ (π΄βπ) = πΉ) β πΉ β (π½ Cn πΎ)) |
109 | 107, 108 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ (π΄βπ) = πΉ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) β (π½ Cn πΎ)) |
110 | 109 | adantlr 713 |
. . . 4
β’ (((π β§ π β {1, 2}) β§ (π΄βπ) = πΉ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) β (π½ Cn πΎ)) |
111 | | refsum2cnlem1.3 |
. . . . . . . . . . 11
β’
β²π₯πΊ |
112 | 89, 111 | nfeq 2916 |
. . . . . . . . . 10
β’
β²π₯(π΄βπ) = πΊ |
113 | | fveq1 6887 |
. . . . . . . . . . 11
β’ ((π΄βπ) = πΊ β ((π΄βπ)βπ₯) = (πΊβπ₯)) |
114 | 113 | a1d 25 |
. . . . . . . . . 10
β’ ((π΄βπ) = πΊ β (π₯ β π β ((π΄βπ)βπ₯) = (πΊβπ₯))) |
115 | 112, 114 | ralrimi 3254 |
. . . . . . . . 9
β’ ((π΄βπ) = πΊ β βπ₯ β π ((π΄βπ)βπ₯) = (πΊβπ₯)) |
116 | | mpteq12f 5235 |
. . . . . . . . 9
β’
((βπ₯ π = π β§ βπ₯ β π ((π΄βπ)βπ₯) = (πΊβπ₯)) β (π₯ β π β¦ ((π΄βπ)βπ₯)) = (π₯ β π β¦ (πΊβπ₯))) |
117 | 86, 115, 116 | sylancr 587 |
. . . . . . . 8
β’ ((π΄βπ) = πΊ β (π₯ β π β¦ ((π΄βπ)βπ₯)) = (π₯ β π β¦ (πΊβπ₯))) |
118 | 117 | adantl 482 |
. . . . . . 7
β’ ((π β§ (π΄βπ) = πΊ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) = (π₯ β π β¦ (πΊβπ₯))) |
119 | | cnf2 22744 |
. . . . . . . . . . 11
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnββ) β§ πΊ β (π½ Cn πΎ)) β πΊ:πβΆβ) |
120 | 34, 100, 19, 119 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β πΊ:πβΆβ) |
121 | 120 | ffnd 6715 |
. . . . . . . . 9
β’ (π β πΊ Fn π) |
122 | 111 | dffn5f 6960 |
. . . . . . . . 9
β’ (πΊ Fn π β πΊ = (π₯ β π β¦ (πΊβπ₯))) |
123 | 121, 122 | sylib 217 |
. . . . . . . 8
β’ (π β πΊ = (π₯ β π β¦ (πΊβπ₯))) |
124 | 123 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π΄βπ) = πΊ) β πΊ = (π₯ β π β¦ (πΊβπ₯))) |
125 | 118, 124 | eqtr4d 2775 |
. . . . . 6
β’ ((π β§ (π΄βπ) = πΊ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) = πΊ) |
126 | 19 | adantr 481 |
. . . . . 6
β’ ((π β§ (π΄βπ) = πΊ) β πΊ β (π½ Cn πΎ)) |
127 | 125, 126 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ (π΄βπ) = πΊ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) β (π½ Cn πΎ)) |
128 | 127 | adantlr 713 |
. . . 4
β’ (((π β§ π β {1, 2}) β§ (π΄βπ) = πΊ) β (π₯ β π β¦ ((π΄βπ)βπ₯)) β (π½ Cn πΎ)) |
129 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ π β {1, 2}) β π β {1, 2}) |
130 | 18, 19 | ifcld 4573 |
. . . . . . . . 9
β’ (π β if(π = 1, πΉ, πΊ) β (π½ Cn πΎ)) |
131 | 130 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β {1, 2}) β if(π = 1, πΉ, πΊ) β (π½ Cn πΎ)) |
132 | 2 | fvmpt2 7006 |
. . . . . . . 8
β’ ((π β {1, 2} β§ if(π = 1, πΉ, πΊ) β (π½ Cn πΎ)) β (π΄βπ) = if(π = 1, πΉ, πΊ)) |
133 | 129, 131,
132 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π β {1, 2}) β (π΄βπ) = if(π = 1, πΉ, πΊ)) |
134 | | iftrue 4533 |
. . . . . . 7
β’ (π = 1 β if(π = 1, πΉ, πΊ) = πΉ) |
135 | 133, 134 | sylan9eq 2792 |
. . . . . 6
β’ (((π β§ π β {1, 2}) β§ π = 1) β (π΄βπ) = πΉ) |
136 | 135 | orcd 871 |
. . . . 5
β’ (((π β§ π β {1, 2}) β§ π = 1) β ((π΄βπ) = πΉ β¨ (π΄βπ) = πΊ)) |
137 | 133 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β {1, 2}) β§ π = 2) β (π΄βπ) = if(π = 1, πΉ, πΊ)) |
138 | | neeq2 3004 |
. . . . . . . . . . . 12
β’ (π = 2 β (1 β π β 1 β
2)) |
139 | 57, 138 | mpbiri 257 |
. . . . . . . . . . 11
β’ (π = 2 β 1 β π) |
140 | 139 | necomd 2996 |
. . . . . . . . . 10
β’ (π = 2 β π β 1) |
141 | 140 | neneqd 2945 |
. . . . . . . . 9
β’ (π = 2 β Β¬ π = 1) |
142 | 141 | adantl 482 |
. . . . . . . 8
β’ (((π β§ π β {1, 2}) β§ π = 2) β Β¬ π = 1) |
143 | 142 | iffalsed 4538 |
. . . . . . 7
β’ (((π β§ π β {1, 2}) β§ π = 2) β if(π = 1, πΉ, πΊ) = πΊ) |
144 | 137, 143 | eqtrd 2772 |
. . . . . 6
β’ (((π β§ π β {1, 2}) β§ π = 2) β (π΄βπ) = πΊ) |
145 | 144 | olcd 872 |
. . . . 5
β’ (((π β§ π β {1, 2}) β§ π = 2) β ((π΄βπ) = πΉ β¨ (π΄βπ) = πΊ)) |
146 | | elpri 4649 |
. . . . . 6
β’ (π β {1, 2} β (π = 1 β¨ π = 2)) |
147 | 146 | adantl 482 |
. . . . 5
β’ ((π β§ π β {1, 2}) β (π = 1 β¨ π = 2)) |
148 | 136, 145,
147 | mpjaodan 957 |
. . . 4
β’ ((π β§ π β {1, 2}) β ((π΄βπ) = πΉ β¨ (π΄βπ) = πΊ)) |
149 | 110, 128,
148 | mpjaodan 957 |
. . 3
β’ ((π β§ π β {1, 2}) β (π₯ β π β¦ ((π΄βπ)βπ₯)) β (π½ Cn πΎ)) |
150 | 1, 38, 34, 84, 149 | refsumcn 43699 |
. 2
β’ (π β (π₯ β π β¦ Ξ£π β {1, 2} ((π΄βπ)βπ₯)) β (π½ Cn πΎ)) |
151 | 82, 150 | eqeltrrd 2834 |
1
β’ (π β (π₯ β π β¦ ((πΉβπ₯) + (πΊβπ₯))) β (π½ Cn πΎ)) |