Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsum2cnlem1 Structured version   Visualization version   GIF version

Theorem refsum2cnlem1 42550
Description: This is the core Lemma for refsum2cn 42551: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsum2cnlem1.1 𝑥𝐴
refsum2cnlem1.2 𝑥𝐹
refsum2cnlem1.3 𝑥𝐺
refsum2cnlem1.4 𝑥𝜑
refsum2cnlem1.5 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
refsum2cnlem1.6 𝐾 = (topGen‘ran (,))
refsum2cnlem1.7 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsum2cnlem1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
refsum2cnlem1.9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsum2cnlem1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑘)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem refsum2cnlem1
StepHypRef Expression
1 refsum2cnlem1.4 . . 3 𝑥𝜑
2 refsum2cnlem1.5 . . . . . . . . 9 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
3 nfmpt1 5187 . . . . . . . . 9 𝑘(𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
42, 3nfcxfr 2907 . . . . . . . 8 𝑘𝐴
5 nfcv 2909 . . . . . . . 8 𝑘1
64, 5nffv 6781 . . . . . . 7 𝑘(𝐴‘1)
7 nfcv 2909 . . . . . . 7 𝑘𝑥
86, 7nffv 6781 . . . . . 6 𝑘((𝐴‘1)‘𝑥)
98a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘1)‘𝑥))
10 nfcv 2909 . . . . . . . 8 𝑘2
114, 10nffv 6781 . . . . . . 7 𝑘(𝐴‘2)
1211, 7nffv 6781 . . . . . 6 𝑘((𝐴‘2)‘𝑥)
1312a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘2)‘𝑥))
14 1cnd 10971 . . . . 5 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 2cnd 12051 . . . . 5 ((𝜑𝑥𝑋) → 2 ∈ ℂ)
16 1ex 10972 . . . . . . . . . . 11 1 ∈ V
1716prid1 4704 . . . . . . . . . 10 1 ∈ {1, 2}
18 refsum2cnlem1.8 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
19 refsum2cnlem1.9 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
2018, 19ifcld 4511 . . . . . . . . . 10 (𝜑 → if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
21 eqeq1 2744 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
2221ifbid 4488 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = if(1 = 1, 𝐹, 𝐺))
2322, 2fvmptg 6870 . . . . . . . . . 10 ((1 ∈ {1, 2} ∧ if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
2417, 20, 23sylancr 587 . . . . . . . . 9 (𝜑 → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
25 eqid 2740 . . . . . . . . . 10 1 = 1
2625iftruei 4472 . . . . . . . . 9 if(1 = 1, 𝐹, 𝐺) = 𝐹
2724, 26eqtrdi 2796 . . . . . . . 8 (𝜑 → (𝐴‘1) = 𝐹)
2827adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘1) = 𝐹)
2928fveq1d 6773 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) = (𝐹𝑥))
30 eqid 2740 . . . . . . . . . . 11 𝐽 = 𝐽
31 eqid 2740 . . . . . . . . . . 11 𝐾 = 𝐾
3230, 31cnf 22395 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
3318, 32syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
34 refsum2cnlem1.7 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
35 toponuni 22061 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3634, 35syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3736eqcomd 2746 . . . . . . . . . 10 (𝜑 𝐽 = 𝑋)
38 refsum2cnlem1.6 . . . . . . . . . . . . 13 𝐾 = (topGen‘ran (,))
3938unieqi 4858 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
40 uniretop 23924 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
4139, 40eqtr4i 2771 . . . . . . . . . . 11 𝐾 = ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 𝐾 = ℝ)
4337, 42feq23d 6593 . . . . . . . . 9 (𝜑 → (𝐹: 𝐽 𝐾𝐹:𝑋⟶ℝ))
4433, 43mpbid 231 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
4544anim1i 615 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹:𝑋⟶ℝ ∧ 𝑥𝑋))
46 ffvelrn 6956 . . . . . . 7 ((𝐹:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
47 recn 10962 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → (𝐹𝑥) ∈ ℂ)
4845, 46, 473syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4929, 48eqeltrd 2841 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) ∈ ℂ)
50 2ex 12050 . . . . . . . . . . 11 2 ∈ V
5150prid2 4705 . . . . . . . . . 10 2 ∈ {1, 2}
5218, 19ifcld 4511 . . . . . . . . . 10 (𝜑 → if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
53 eqeq1 2744 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 = 1 ↔ 2 = 1))
5453ifbid 4488 . . . . . . . . . . 11 (𝑘 = 2 → if(𝑘 = 1, 𝐹, 𝐺) = if(2 = 1, 𝐹, 𝐺))
5554, 2fvmptg 6870 . . . . . . . . . 10 ((2 ∈ {1, 2} ∧ if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
5651, 52, 55sylancr 587 . . . . . . . . 9 (𝜑 → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
57 1ne2 12181 . . . . . . . . . . 11 1 ≠ 2
5857nesymi 3003 . . . . . . . . . 10 ¬ 2 = 1
5958iffalsei 4475 . . . . . . . . 9 if(2 = 1, 𝐹, 𝐺) = 𝐺
6056, 59eqtrdi 2796 . . . . . . . 8 (𝜑 → (𝐴‘2) = 𝐺)
6160adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘2) = 𝐺)
6261fveq1d 6773 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) = (𝐺𝑥))
6330, 31cnf 22395 . . . . . . . . . 10 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
6419, 63syl 17 . . . . . . . . 9 (𝜑𝐺: 𝐽 𝐾)
6537, 42feq23d 6593 . . . . . . . . 9 (𝜑 → (𝐺: 𝐽 𝐾𝐺:𝑋⟶ℝ))
6664, 65mpbid 231 . . . . . . . 8 (𝜑𝐺:𝑋⟶ℝ)
6766anim1i 615 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐺:𝑋⟶ℝ ∧ 𝑥𝑋))
68 ffvelrn 6956 . . . . . . 7 ((𝐺:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ℝ)
69 recn 10962 . . . . . . 7 ((𝐺𝑥) ∈ ℝ → (𝐺𝑥) ∈ ℂ)
7067, 68, 693syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
7162, 70eqeltrd 2841 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) ∈ ℂ)
7257a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 1 ≠ 2)
73 fveq2 6771 . . . . . . 7 (𝑘 = 1 → (𝐴𝑘) = (𝐴‘1))
7473fveq1d 6773 . . . . . 6 (𝑘 = 1 → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
7574adantl 482 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 1) → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
76 fveq2 6771 . . . . . . 7 (𝑘 = 2 → (𝐴𝑘) = (𝐴‘2))
7776fveq1d 6773 . . . . . 6 (𝑘 = 2 → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
7877adantl 482 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 2) → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
799, 13, 14, 15, 49, 71, 72, 75, 78sumpair 42548 . . . 4 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)))
8029, 62oveq12d 7289 . . . 4 ((𝜑𝑥𝑋) → (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
8179, 80eqtrd 2780 . . 3 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
821, 81mpteq2da 5177 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))))
83 prfi 9067 . . . 4 {1, 2} ∈ Fin
8483a1i 11 . . 3 (𝜑 → {1, 2} ∈ Fin)
85 eqid 2740 . . . . . . . . . 10 𝑋 = 𝑋
8685ax-gen 1802 . . . . . . . . 9 𝑥 𝑋 = 𝑋
87 refsum2cnlem1.1 . . . . . . . . . . . 12 𝑥𝐴
88 nfcv 2909 . . . . . . . . . . . 12 𝑥𝑘
8987, 88nffv 6781 . . . . . . . . . . 11 𝑥(𝐴𝑘)
90 refsum2cnlem1.2 . . . . . . . . . . 11 𝑥𝐹
9189, 90nfeq 2922 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐹
92 fveq1 6770 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐹 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
9392a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥)))
9491, 93ralrimi 3142 . . . . . . . . 9 ((𝐴𝑘) = 𝐹 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
95 mpteq12f 5167 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9686, 94, 95sylancr 587 . . . . . . . 8 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9796adantl 482 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
98 retopon 23925 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
9938, 98eqeltri 2837 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℝ)
10099a1i 11 . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘ℝ))
101 cnf2 22398 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶ℝ)
10234, 100, 18, 101syl3anc 1370 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℝ)
103102ffnd 6599 . . . . . . . . 9 (𝜑𝐹 Fn 𝑋)
10490dffn5f 6837 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
105103, 104sylib 217 . . . . . . . 8 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
106105adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
10797, 106eqtr4d 2783 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐹)
10818adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 ∈ (𝐽 Cn 𝐾))
109107, 108eqeltrd 2841 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
110109adantlr 712 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
111 refsum2cnlem1.3 . . . . . . . . . . 11 𝑥𝐺
11289, 111nfeq 2922 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐺
113 fveq1 6770 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐺 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
114113a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥)))
115112, 114ralrimi 3142 . . . . . . . . 9 ((𝐴𝑘) = 𝐺 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
116 mpteq12f 5167 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
11786, 115, 116sylancr 587 . . . . . . . 8 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
118117adantl 482 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
119 cnf2 22398 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋⟶ℝ)
12034, 100, 19, 119syl3anc 1370 . . . . . . . . . 10 (𝜑𝐺:𝑋⟶ℝ)
121120ffnd 6599 . . . . . . . . 9 (𝜑𝐺 Fn 𝑋)
122111dffn5f 6837 . . . . . . . . 9 (𝐺 Fn 𝑋𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
123121, 122sylib 217 . . . . . . . 8 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
124123adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
125118, 124eqtr4d 2783 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐺)
12619adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 ∈ (𝐽 Cn 𝐾))
127125, 126eqeltrd 2841 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
128127adantlr 712 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
129 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → 𝑘 ∈ {1, 2})
13018, 19ifcld 4511 . . . . . . . . 9 (𝜑 → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
131130adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
1322fvmpt2 6883 . . . . . . . 8 ((𝑘 ∈ {1, 2} ∧ if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
133129, 131, 132syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ {1, 2}) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
134 iftrue 4471 . . . . . . 7 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = 𝐹)
135133, 134sylan9eq 2800 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → (𝐴𝑘) = 𝐹)
136135orcd 870 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
137133adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
138 neeq2 3009 . . . . . . . . . . . 12 (𝑘 = 2 → (1 ≠ 𝑘 ↔ 1 ≠ 2))
13957, 138mpbiri 257 . . . . . . . . . . 11 (𝑘 = 2 → 1 ≠ 𝑘)
140139necomd 3001 . . . . . . . . . 10 (𝑘 = 2 → 𝑘 ≠ 1)
141140neneqd 2950 . . . . . . . . 9 (𝑘 = 2 → ¬ 𝑘 = 1)
142141adantl 482 . . . . . . . 8 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ¬ 𝑘 = 1)
143142iffalsed 4476 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → if(𝑘 = 1, 𝐹, 𝐺) = 𝐺)
144137, 143eqtrd 2780 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = 𝐺)
145144olcd 871 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
146 elpri 4589 . . . . . 6 (𝑘 ∈ {1, 2} → (𝑘 = 1 ∨ 𝑘 = 2))
147146adantl 482 . . . . 5 ((𝜑𝑘 ∈ {1, 2}) → (𝑘 = 1 ∨ 𝑘 = 2))
148136, 145, 147mpjaodan 956 . . . 4 ((𝜑𝑘 ∈ {1, 2}) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
149110, 128, 148mpjaodan 956 . . 3 ((𝜑𝑘 ∈ {1, 2}) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
1501, 38, 34, 84, 149refsumcn 42543 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
15182, 150eqeltrrd 2842 1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wal 1540   = wceq 1542  wnf 1790  wcel 2110  wnfc 2889  wne 2945  wral 3066  ifcif 4465  {cpr 4569   cuni 4845  cmpt 5162  ran crn 5591   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271  Fincfn 8716  cc 10870  cr 10871  1c1 10873   + caddc 10875  2c2 12028  (,)cioo 13078  Σcsu 15395  topGenctg 17146  TopOnctopon 22057   Cn ccn 22373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cn 22376  df-cnp 22377  df-tx 22711  df-hmeo 22904  df-xms 23471  df-ms 23472  df-tms 23473
This theorem is referenced by:  refsum2cn  42551
  Copyright terms: Public domain W3C validator