Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsum2cnlem1 Structured version   Visualization version   GIF version

Theorem refsum2cnlem1 41601
Description: This is the core Lemma for refsum2cn 41602: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsum2cnlem1.1 𝑥𝐴
refsum2cnlem1.2 𝑥𝐹
refsum2cnlem1.3 𝑥𝐺
refsum2cnlem1.4 𝑥𝜑
refsum2cnlem1.5 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
refsum2cnlem1.6 𝐾 = (topGen‘ran (,))
refsum2cnlem1.7 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsum2cnlem1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
refsum2cnlem1.9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsum2cnlem1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑘)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem refsum2cnlem1
StepHypRef Expression
1 refsum2cnlem1.4 . . 3 𝑥𝜑
2 refsum2cnlem1.5 . . . . . . . . 9 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
3 nfmpt1 5140 . . . . . . . . 9 𝑘(𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
42, 3nfcxfr 2977 . . . . . . . 8 𝑘𝐴
5 nfcv 2979 . . . . . . . 8 𝑘1
64, 5nffv 6662 . . . . . . 7 𝑘(𝐴‘1)
7 nfcv 2979 . . . . . . 7 𝑘𝑥
86, 7nffv 6662 . . . . . 6 𝑘((𝐴‘1)‘𝑥)
98a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘1)‘𝑥))
10 nfcv 2979 . . . . . . . 8 𝑘2
114, 10nffv 6662 . . . . . . 7 𝑘(𝐴‘2)
1211, 7nffv 6662 . . . . . 6 𝑘((𝐴‘2)‘𝑥)
1312a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘2)‘𝑥))
14 1cnd 10625 . . . . 5 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 2cnd 11703 . . . . 5 ((𝜑𝑥𝑋) → 2 ∈ ℂ)
16 1ex 10626 . . . . . . . . . . 11 1 ∈ V
1716prid1 4672 . . . . . . . . . 10 1 ∈ {1, 2}
18 refsum2cnlem1.8 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
19 refsum2cnlem1.9 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
2018, 19ifcld 4484 . . . . . . . . . 10 (𝜑 → if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
21 eqeq1 2826 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
2221ifbid 4461 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = if(1 = 1, 𝐹, 𝐺))
2322, 2fvmptg 6748 . . . . . . . . . 10 ((1 ∈ {1, 2} ∧ if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
2417, 20, 23sylancr 590 . . . . . . . . 9 (𝜑 → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
25 eqid 2822 . . . . . . . . . 10 1 = 1
2625iftruei 4446 . . . . . . . . 9 if(1 = 1, 𝐹, 𝐺) = 𝐹
2724, 26syl6eq 2873 . . . . . . . 8 (𝜑 → (𝐴‘1) = 𝐹)
2827adantr 484 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘1) = 𝐹)
2928fveq1d 6654 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) = (𝐹𝑥))
30 eqid 2822 . . . . . . . . . . 11 𝐽 = 𝐽
31 eqid 2822 . . . . . . . . . . 11 𝐾 = 𝐾
3230, 31cnf 21849 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
3318, 32syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
34 refsum2cnlem1.7 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
35 toponuni 21517 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3634, 35syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3736eqcomd 2828 . . . . . . . . . 10 (𝜑 𝐽 = 𝑋)
38 refsum2cnlem1.6 . . . . . . . . . . . . 13 𝐾 = (topGen‘ran (,))
3938unieqi 4826 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
40 uniretop 23366 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
4139, 40eqtr4i 2848 . . . . . . . . . . 11 𝐾 = ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 𝐾 = ℝ)
4337, 42feq23d 6489 . . . . . . . . 9 (𝜑 → (𝐹: 𝐽 𝐾𝐹:𝑋⟶ℝ))
4433, 43mpbid 235 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
4544anim1i 617 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹:𝑋⟶ℝ ∧ 𝑥𝑋))
46 ffvelrn 6831 . . . . . . 7 ((𝐹:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
47 recn 10616 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → (𝐹𝑥) ∈ ℂ)
4845, 46, 473syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4929, 48eqeltrd 2914 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) ∈ ℂ)
50 2ex 11702 . . . . . . . . . . 11 2 ∈ V
5150prid2 4673 . . . . . . . . . 10 2 ∈ {1, 2}
5218, 19ifcld 4484 . . . . . . . . . 10 (𝜑 → if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
53 eqeq1 2826 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 = 1 ↔ 2 = 1))
5453ifbid 4461 . . . . . . . . . . 11 (𝑘 = 2 → if(𝑘 = 1, 𝐹, 𝐺) = if(2 = 1, 𝐹, 𝐺))
5554, 2fvmptg 6748 . . . . . . . . . 10 ((2 ∈ {1, 2} ∧ if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
5651, 52, 55sylancr 590 . . . . . . . . 9 (𝜑 → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
57 1ne2 11833 . . . . . . . . . . 11 1 ≠ 2
5857nesymi 3068 . . . . . . . . . 10 ¬ 2 = 1
5958iffalsei 4449 . . . . . . . . 9 if(2 = 1, 𝐹, 𝐺) = 𝐺
6056, 59syl6eq 2873 . . . . . . . 8 (𝜑 → (𝐴‘2) = 𝐺)
6160adantr 484 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘2) = 𝐺)
6261fveq1d 6654 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) = (𝐺𝑥))
6330, 31cnf 21849 . . . . . . . . . 10 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
6419, 63syl 17 . . . . . . . . 9 (𝜑𝐺: 𝐽 𝐾)
6537, 42feq23d 6489 . . . . . . . . 9 (𝜑 → (𝐺: 𝐽 𝐾𝐺:𝑋⟶ℝ))
6664, 65mpbid 235 . . . . . . . 8 (𝜑𝐺:𝑋⟶ℝ)
6766anim1i 617 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐺:𝑋⟶ℝ ∧ 𝑥𝑋))
68 ffvelrn 6831 . . . . . . 7 ((𝐺:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ℝ)
69 recn 10616 . . . . . . 7 ((𝐺𝑥) ∈ ℝ → (𝐺𝑥) ∈ ℂ)
7067, 68, 693syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
7162, 70eqeltrd 2914 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) ∈ ℂ)
7257a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 1 ≠ 2)
73 fveq2 6652 . . . . . . 7 (𝑘 = 1 → (𝐴𝑘) = (𝐴‘1))
7473fveq1d 6654 . . . . . 6 (𝑘 = 1 → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
7574adantl 485 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 1) → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
76 fveq2 6652 . . . . . . 7 (𝑘 = 2 → (𝐴𝑘) = (𝐴‘2))
7776fveq1d 6654 . . . . . 6 (𝑘 = 2 → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
7877adantl 485 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 2) → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
799, 13, 14, 15, 49, 71, 72, 75, 78sumpair 41599 . . . 4 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)))
8029, 62oveq12d 7158 . . . 4 ((𝜑𝑥𝑋) → (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
8179, 80eqtrd 2857 . . 3 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
821, 81mpteq2da 5136 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))))
83 prfi 8781 . . . 4 {1, 2} ∈ Fin
8483a1i 11 . . 3 (𝜑 → {1, 2} ∈ Fin)
85 eqid 2822 . . . . . . . . . 10 𝑋 = 𝑋
8685ax-gen 1797 . . . . . . . . 9 𝑥 𝑋 = 𝑋
87 refsum2cnlem1.1 . . . . . . . . . . . 12 𝑥𝐴
88 nfcv 2979 . . . . . . . . . . . 12 𝑥𝑘
8987, 88nffv 6662 . . . . . . . . . . 11 𝑥(𝐴𝑘)
90 refsum2cnlem1.2 . . . . . . . . . . 11 𝑥𝐹
9189, 90nfeq 2992 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐹
92 fveq1 6651 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐹 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
9392a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥)))
9491, 93ralrimi 3205 . . . . . . . . 9 ((𝐴𝑘) = 𝐹 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
95 mpteq12f 5125 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9686, 94, 95sylancr 590 . . . . . . . 8 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9796adantl 485 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
98 retopon 23367 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
9938, 98eqeltri 2910 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℝ)
10099a1i 11 . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘ℝ))
101 cnf2 21852 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶ℝ)
10234, 100, 18, 101syl3anc 1368 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℝ)
103102ffnd 6495 . . . . . . . . 9 (𝜑𝐹 Fn 𝑋)
10490dffn5f 6718 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
105103, 104sylib 221 . . . . . . . 8 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
106105adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
10797, 106eqtr4d 2860 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐹)
10818adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 ∈ (𝐽 Cn 𝐾))
109107, 108eqeltrd 2914 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
110109adantlr 714 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
111 refsum2cnlem1.3 . . . . . . . . . . 11 𝑥𝐺
11289, 111nfeq 2992 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐺
113 fveq1 6651 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐺 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
114113a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥)))
115112, 114ralrimi 3205 . . . . . . . . 9 ((𝐴𝑘) = 𝐺 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
116 mpteq12f 5125 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
11786, 115, 116sylancr 590 . . . . . . . 8 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
118117adantl 485 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
119 cnf2 21852 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋⟶ℝ)
12034, 100, 19, 119syl3anc 1368 . . . . . . . . . 10 (𝜑𝐺:𝑋⟶ℝ)
121120ffnd 6495 . . . . . . . . 9 (𝜑𝐺 Fn 𝑋)
122111dffn5f 6718 . . . . . . . . 9 (𝐺 Fn 𝑋𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
123121, 122sylib 221 . . . . . . . 8 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
124123adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
125118, 124eqtr4d 2860 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐺)
12619adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 ∈ (𝐽 Cn 𝐾))
127125, 126eqeltrd 2914 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
128127adantlr 714 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
129 simpr 488 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → 𝑘 ∈ {1, 2})
13018, 19ifcld 4484 . . . . . . . . 9 (𝜑 → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
131130adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
1322fvmpt2 6761 . . . . . . . 8 ((𝑘 ∈ {1, 2} ∧ if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
133129, 131, 132syl2anc 587 . . . . . . 7 ((𝜑𝑘 ∈ {1, 2}) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
134 iftrue 4445 . . . . . . 7 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = 𝐹)
135133, 134sylan9eq 2877 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → (𝐴𝑘) = 𝐹)
136135orcd 870 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
137133adantr 484 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
138 neeq2 3074 . . . . . . . . . . . 12 (𝑘 = 2 → (1 ≠ 𝑘 ↔ 1 ≠ 2))
13957, 138mpbiri 261 . . . . . . . . . . 11 (𝑘 = 2 → 1 ≠ 𝑘)
140139necomd 3066 . . . . . . . . . 10 (𝑘 = 2 → 𝑘 ≠ 1)
141140neneqd 3016 . . . . . . . . 9 (𝑘 = 2 → ¬ 𝑘 = 1)
142141adantl 485 . . . . . . . 8 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ¬ 𝑘 = 1)
143142iffalsed 4450 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → if(𝑘 = 1, 𝐹, 𝐺) = 𝐺)
144137, 143eqtrd 2857 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = 𝐺)
145144olcd 871 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
146 elpri 4561 . . . . . 6 (𝑘 ∈ {1, 2} → (𝑘 = 1 ∨ 𝑘 = 2))
147146adantl 485 . . . . 5 ((𝜑𝑘 ∈ {1, 2}) → (𝑘 = 1 ∨ 𝑘 = 2))
148136, 145, 147mpjaodan 956 . . . 4 ((𝜑𝑘 ∈ {1, 2}) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
149110, 128, 148mpjaodan 956 . . 3 ((𝜑𝑘 ∈ {1, 2}) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
1501, 38, 34, 84, 149refsumcn 41594 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
15182, 150eqeltrrd 2915 1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  wal 1536   = wceq 1538  wnf 1785  wcel 2114  wnfc 2960  wne 3011  wral 3130  ifcif 4439  {cpr 4541   cuni 4813  cmpt 5122  ran crn 5533   Fn wfn 6329  wf 6330  cfv 6334  (class class class)co 7140  Fincfn 8496  cc 10524  cr 10525  1c1 10527   + caddc 10529  2c2 11680  (,)cioo 12726  Σcsu 15033  topGenctg 16702  TopOnctopon 21513   Cn ccn 21827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cn 21830  df-cnp 21831  df-tx 22165  df-hmeo 22358  df-xms 22925  df-ms 22926  df-tms 22927
This theorem is referenced by:  refsum2cn  41602
  Copyright terms: Public domain W3C validator