Proof of Theorem refsum2cnlem1
| Step | Hyp | Ref
| Expression |
| 1 | | refsum2cnlem1.4 |
. . 3
⊢
Ⅎ𝑥𝜑 |
| 2 | | refsum2cnlem1.5 |
. . . . . . . . 9
⊢ 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺)) |
| 3 | | nfmpt1 5250 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺)) |
| 4 | 2, 3 | nfcxfr 2903 |
. . . . . . . 8
⊢
Ⅎ𝑘𝐴 |
| 5 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘1 |
| 6 | 4, 5 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑘(𝐴‘1) |
| 7 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑘𝑥 |
| 8 | 6, 7 | nffv 6916 |
. . . . . 6
⊢
Ⅎ𝑘((𝐴‘1)‘𝑥) |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Ⅎ𝑘((𝐴‘1)‘𝑥)) |
| 10 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘2 |
| 11 | 4, 10 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑘(𝐴‘2) |
| 12 | 11, 7 | nffv 6916 |
. . . . . 6
⊢
Ⅎ𝑘((𝐴‘2)‘𝑥) |
| 13 | 12 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Ⅎ𝑘((𝐴‘2)‘𝑥)) |
| 14 | | 1cnd 11256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℂ) |
| 15 | | 2cnd 12344 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 2 ∈ ℂ) |
| 16 | | 1ex 11257 |
. . . . . . . . . . 11
⊢ 1 ∈
V |
| 17 | 16 | prid1 4762 |
. . . . . . . . . 10
⊢ 1 ∈
{1, 2} |
| 18 | | refsum2cnlem1.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 19 | | refsum2cnlem1.9 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| 20 | 18, 19 | ifcld 4572 |
. . . . . . . . . 10
⊢ (𝜑 → if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) |
| 21 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1)) |
| 22 | 21 | ifbid 4549 |
. . . . . . . . . . 11
⊢ (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = if(1 = 1, 𝐹, 𝐺)) |
| 23 | 22, 2 | fvmptg 7014 |
. . . . . . . . . 10
⊢ ((1
∈ {1, 2} ∧ if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺)) |
| 24 | 17, 20, 23 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺)) |
| 25 | | eqid 2737 |
. . . . . . . . . 10
⊢ 1 =
1 |
| 26 | 25 | iftruei 4532 |
. . . . . . . . 9
⊢ if(1 = 1,
𝐹, 𝐺) = 𝐹 |
| 27 | 24, 26 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘1) = 𝐹) |
| 28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴‘1) = 𝐹) |
| 29 | 28 | fveq1d 6908 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴‘1)‘𝑥) = (𝐹‘𝑥)) |
| 30 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 31 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 32 | 30, 31 | cnf 23254 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 33 | 18, 32 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 34 | | refsum2cnlem1.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 35 | | toponuni 22920 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 37 | 36 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝐽 =
𝑋) |
| 38 | | refsum2cnlem1.6 |
. . . . . . . . . . . . 13
⊢ 𝐾 = (topGen‘ran
(,)) |
| 39 | 38 | unieqi 4919 |
. . . . . . . . . . . 12
⊢ ∪ 𝐾 =
∪ (topGen‘ran (,)) |
| 40 | | uniretop 24783 |
. . . . . . . . . . . 12
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 41 | 39, 40 | eqtr4i 2768 |
. . . . . . . . . . 11
⊢ ∪ 𝐾 =
ℝ |
| 42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝐾 =
ℝ) |
| 43 | 37, 42 | feq23d 6731 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹:∪ 𝐽⟶∪ 𝐾
↔ 𝐹:𝑋⟶ℝ)) |
| 44 | 33, 43 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 45 | 44 | anim1i 615 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹:𝑋⟶ℝ ∧ 𝑥 ∈ 𝑋)) |
| 46 | | ffvelcdm 7101 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
| 47 | | recn 11245 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ ℝ → (𝐹‘𝑥) ∈ ℂ) |
| 48 | 45, 46, 47 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
| 49 | 29, 48 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴‘1)‘𝑥) ∈ ℂ) |
| 50 | | 2ex 12343 |
. . . . . . . . . . 11
⊢ 2 ∈
V |
| 51 | 50 | prid2 4763 |
. . . . . . . . . 10
⊢ 2 ∈
{1, 2} |
| 52 | 18, 19 | ifcld 4572 |
. . . . . . . . . 10
⊢ (𝜑 → if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) |
| 53 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑘 = 2 → (𝑘 = 1 ↔ 2 = 1)) |
| 54 | 53 | ifbid 4549 |
. . . . . . . . . . 11
⊢ (𝑘 = 2 → if(𝑘 = 1, 𝐹, 𝐺) = if(2 = 1, 𝐹, 𝐺)) |
| 55 | 54, 2 | fvmptg 7014 |
. . . . . . . . . 10
⊢ ((2
∈ {1, 2} ∧ if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺)) |
| 56 | 51, 52, 55 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺)) |
| 57 | | 1ne2 12474 |
. . . . . . . . . . 11
⊢ 1 ≠
2 |
| 58 | 57 | nesymi 2998 |
. . . . . . . . . 10
⊢ ¬ 2
= 1 |
| 59 | 58 | iffalsei 4535 |
. . . . . . . . 9
⊢ if(2 = 1,
𝐹, 𝐺) = 𝐺 |
| 60 | 56, 59 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘2) = 𝐺) |
| 61 | 60 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴‘2) = 𝐺) |
| 62 | 61 | fveq1d 6908 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴‘2)‘𝑥) = (𝐺‘𝑥)) |
| 63 | 30, 31 | cnf 23254 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺:∪ 𝐽⟶∪ 𝐾) |
| 64 | 19, 63 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:∪ 𝐽⟶∪ 𝐾) |
| 65 | 37, 42 | feq23d 6731 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺:∪ 𝐽⟶∪ 𝐾
↔ 𝐺:𝑋⟶ℝ)) |
| 66 | 64, 65 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝑋⟶ℝ) |
| 67 | 66 | anim1i 615 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺:𝑋⟶ℝ ∧ 𝑥 ∈ 𝑋)) |
| 68 | | ffvelcdm 7101 |
. . . . . . 7
⊢ ((𝐺:𝑋⟶ℝ ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℝ) |
| 69 | | recn 11245 |
. . . . . . 7
⊢ ((𝐺‘𝑥) ∈ ℝ → (𝐺‘𝑥) ∈ ℂ) |
| 70 | 67, 68, 69 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℂ) |
| 71 | 62, 70 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴‘2)‘𝑥) ∈ ℂ) |
| 72 | 57 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ≠ 2) |
| 73 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝐴‘𝑘) = (𝐴‘1)) |
| 74 | 73 | fveq1d 6908 |
. . . . . 6
⊢ (𝑘 = 1 → ((𝐴‘𝑘)‘𝑥) = ((𝐴‘1)‘𝑥)) |
| 75 | 74 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 1) → ((𝐴‘𝑘)‘𝑥) = ((𝐴‘1)‘𝑥)) |
| 76 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 2 → (𝐴‘𝑘) = (𝐴‘2)) |
| 77 | 76 | fveq1d 6908 |
. . . . . 6
⊢ (𝑘 = 2 → ((𝐴‘𝑘)‘𝑥) = ((𝐴‘2)‘𝑥)) |
| 78 | 77 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 2) → ((𝐴‘𝑘)‘𝑥) = ((𝐴‘2)‘𝑥)) |
| 79 | 9, 13, 14, 15, 49, 71, 72, 75, 78 | sumpair 45040 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴‘𝑘)‘𝑥) = (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥))) |
| 80 | 29, 62 | oveq12d 7449 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 81 | 79, 80 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴‘𝑘)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 82 | 1, 81 | mpteq2da 5240 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴‘𝑘)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 83 | | prfi 9363 |
. . . 4
⊢ {1, 2}
∈ Fin |
| 84 | 83 | a1i 11 |
. . 3
⊢ (𝜑 → {1, 2} ∈
Fin) |
| 85 | | eqid 2737 |
. . . . . . . . . 10
⊢ 𝑋 = 𝑋 |
| 86 | 85 | ax-gen 1795 |
. . . . . . . . 9
⊢
∀𝑥 𝑋 = 𝑋 |
| 87 | | refsum2cnlem1.1 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐴 |
| 88 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑘 |
| 89 | 87, 88 | nffv 6916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝐴‘𝑘) |
| 90 | | refsum2cnlem1.2 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐹 |
| 91 | 89, 90 | nfeq 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐴‘𝑘) = 𝐹 |
| 92 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ ((𝐴‘𝑘) = 𝐹 → ((𝐴‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
| 93 | 92 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝐴‘𝑘) = 𝐹 → (𝑥 ∈ 𝑋 → ((𝐴‘𝑘)‘𝑥) = (𝐹‘𝑥))) |
| 94 | 91, 93 | ralrimi 3257 |
. . . . . . . . 9
⊢ ((𝐴‘𝑘) = 𝐹 → ∀𝑥 ∈ 𝑋 ((𝐴‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
| 95 | | mpteq12f 5230 |
. . . . . . . . 9
⊢
((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥 ∈ 𝑋 ((𝐴‘𝑘)‘𝑥) = (𝐹‘𝑥)) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 96 | 86, 94, 95 | sylancr 587 |
. . . . . . . 8
⊢ ((𝐴‘𝑘) = 𝐹 → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 97 | 96 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐹) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 98 | | retopon 24784 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 99 | 38, 98 | eqeltri 2837 |
. . . . . . . . . . . 12
⊢ 𝐾 ∈
(TopOn‘ℝ) |
| 100 | 99 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℝ)) |
| 101 | | cnf2 23257 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶ℝ) |
| 102 | 34, 100, 18, 101 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 103 | 102 | ffnd 6737 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 104 | 90 | dffn5f 6980 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑋 ↔ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 105 | 103, 104 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 106 | 105 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐹) → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 107 | 97, 106 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐹) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = 𝐹) |
| 108 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐹) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 109 | 107, 108 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐹) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾)) |
| 110 | 109 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ (𝐴‘𝑘) = 𝐹) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾)) |
| 111 | | refsum2cnlem1.3 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐺 |
| 112 | 89, 111 | nfeq 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐴‘𝑘) = 𝐺 |
| 113 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ ((𝐴‘𝑘) = 𝐺 → ((𝐴‘𝑘)‘𝑥) = (𝐺‘𝑥)) |
| 114 | 113 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝐴‘𝑘) = 𝐺 → (𝑥 ∈ 𝑋 → ((𝐴‘𝑘)‘𝑥) = (𝐺‘𝑥))) |
| 115 | 112, 114 | ralrimi 3257 |
. . . . . . . . 9
⊢ ((𝐴‘𝑘) = 𝐺 → ∀𝑥 ∈ 𝑋 ((𝐴‘𝑘)‘𝑥) = (𝐺‘𝑥)) |
| 116 | | mpteq12f 5230 |
. . . . . . . . 9
⊢
((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥 ∈ 𝑋 ((𝐴‘𝑘)‘𝑥) = (𝐺‘𝑥)) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 117 | 86, 115, 116 | sylancr 587 |
. . . . . . . 8
⊢ ((𝐴‘𝑘) = 𝐺 → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 118 | 117 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐺) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 119 | | cnf2 23257 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋⟶ℝ) |
| 120 | 34, 100, 19, 119 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:𝑋⟶ℝ) |
| 121 | 120 | ffnd 6737 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn 𝑋) |
| 122 | 111 | dffn5f 6980 |
. . . . . . . . 9
⊢ (𝐺 Fn 𝑋 ↔ 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 123 | 121, 122 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 124 | 123 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐺) → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 125 | 118, 124 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐺) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) = 𝐺) |
| 126 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐺) → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| 127 | 125, 126 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑘) = 𝐺) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾)) |
| 128 | 127 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ (𝐴‘𝑘) = 𝐺) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾)) |
| 129 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {1, 2}) → 𝑘 ∈ {1, 2}) |
| 130 | 18, 19 | ifcld 4572 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) |
| 131 | 130 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {1, 2}) → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) |
| 132 | 2 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑘 ∈ {1, 2} ∧ if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘𝑘) = if(𝑘 = 1, 𝐹, 𝐺)) |
| 133 | 129, 131,
132 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {1, 2}) → (𝐴‘𝑘) = if(𝑘 = 1, 𝐹, 𝐺)) |
| 134 | | iftrue 4531 |
. . . . . . 7
⊢ (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = 𝐹) |
| 135 | 133, 134 | sylan9eq 2797 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → (𝐴‘𝑘) = 𝐹) |
| 136 | 135 | orcd 874 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → ((𝐴‘𝑘) = 𝐹 ∨ (𝐴‘𝑘) = 𝐺)) |
| 137 | 133 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴‘𝑘) = if(𝑘 = 1, 𝐹, 𝐺)) |
| 138 | | neeq2 3004 |
. . . . . . . . . . . 12
⊢ (𝑘 = 2 → (1 ≠ 𝑘 ↔ 1 ≠
2)) |
| 139 | 57, 138 | mpbiri 258 |
. . . . . . . . . . 11
⊢ (𝑘 = 2 → 1 ≠ 𝑘) |
| 140 | 139 | necomd 2996 |
. . . . . . . . . 10
⊢ (𝑘 = 2 → 𝑘 ≠ 1) |
| 141 | 140 | neneqd 2945 |
. . . . . . . . 9
⊢ (𝑘 = 2 → ¬ 𝑘 = 1) |
| 142 | 141 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ¬ 𝑘 = 1) |
| 143 | 142 | iffalsed 4536 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → if(𝑘 = 1, 𝐹, 𝐺) = 𝐺) |
| 144 | 137, 143 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴‘𝑘) = 𝐺) |
| 145 | 144 | olcd 875 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ((𝐴‘𝑘) = 𝐹 ∨ (𝐴‘𝑘) = 𝐺)) |
| 146 | | elpri 4649 |
. . . . . 6
⊢ (𝑘 ∈ {1, 2} → (𝑘 = 1 ∨ 𝑘 = 2)) |
| 147 | 146 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {1, 2}) → (𝑘 = 1 ∨ 𝑘 = 2)) |
| 148 | 136, 145,
147 | mpjaodan 961 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {1, 2}) → ((𝐴‘𝑘) = 𝐹 ∨ (𝐴‘𝑘) = 𝐺)) |
| 149 | 110, 128,
148 | mpjaodan 961 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ {1, 2}) → (𝑥 ∈ 𝑋 ↦ ((𝐴‘𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾)) |
| 150 | 1, 38, 34, 84, 149 | refsumcn 45035 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴‘𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾)) |
| 151 | 82, 150 | eqeltrrd 2842 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) |