Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsum2cnlem1 Structured version   Visualization version   GIF version

Theorem refsum2cnlem1 44541
Description: This is the core Lemma for refsum2cn 44542: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsum2cnlem1.1 𝑥𝐴
refsum2cnlem1.2 𝑥𝐹
refsum2cnlem1.3 𝑥𝐺
refsum2cnlem1.4 𝑥𝜑
refsum2cnlem1.5 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
refsum2cnlem1.6 𝐾 = (topGen‘ran (,))
refsum2cnlem1.7 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsum2cnlem1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
refsum2cnlem1.9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsum2cnlem1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑘)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem refsum2cnlem1
StepHypRef Expression
1 refsum2cnlem1.4 . . 3 𝑥𝜑
2 refsum2cnlem1.5 . . . . . . . . 9 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
3 nfmpt1 5257 . . . . . . . . 9 𝑘(𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
42, 3nfcxfr 2889 . . . . . . . 8 𝑘𝐴
5 nfcv 2891 . . . . . . . 8 𝑘1
64, 5nffv 6906 . . . . . . 7 𝑘(𝐴‘1)
7 nfcv 2891 . . . . . . 7 𝑘𝑥
86, 7nffv 6906 . . . . . 6 𝑘((𝐴‘1)‘𝑥)
98a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘1)‘𝑥))
10 nfcv 2891 . . . . . . . 8 𝑘2
114, 10nffv 6906 . . . . . . 7 𝑘(𝐴‘2)
1211, 7nffv 6906 . . . . . 6 𝑘((𝐴‘2)‘𝑥)
1312a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘2)‘𝑥))
14 1cnd 11241 . . . . 5 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 2cnd 12323 . . . . 5 ((𝜑𝑥𝑋) → 2 ∈ ℂ)
16 1ex 11242 . . . . . . . . . . 11 1 ∈ V
1716prid1 4768 . . . . . . . . . 10 1 ∈ {1, 2}
18 refsum2cnlem1.8 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
19 refsum2cnlem1.9 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
2018, 19ifcld 4576 . . . . . . . . . 10 (𝜑 → if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
21 eqeq1 2729 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
2221ifbid 4553 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = if(1 = 1, 𝐹, 𝐺))
2322, 2fvmptg 7002 . . . . . . . . . 10 ((1 ∈ {1, 2} ∧ if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
2417, 20, 23sylancr 585 . . . . . . . . 9 (𝜑 → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
25 eqid 2725 . . . . . . . . . 10 1 = 1
2625iftruei 4537 . . . . . . . . 9 if(1 = 1, 𝐹, 𝐺) = 𝐹
2724, 26eqtrdi 2781 . . . . . . . 8 (𝜑 → (𝐴‘1) = 𝐹)
2827adantr 479 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘1) = 𝐹)
2928fveq1d 6898 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) = (𝐹𝑥))
30 eqid 2725 . . . . . . . . . . 11 𝐽 = 𝐽
31 eqid 2725 . . . . . . . . . . 11 𝐾 = 𝐾
3230, 31cnf 23194 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
3318, 32syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
34 refsum2cnlem1.7 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
35 toponuni 22860 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3634, 35syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3736eqcomd 2731 . . . . . . . . . 10 (𝜑 𝐽 = 𝑋)
38 refsum2cnlem1.6 . . . . . . . . . . . . 13 𝐾 = (topGen‘ran (,))
3938unieqi 4921 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
40 uniretop 24723 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
4139, 40eqtr4i 2756 . . . . . . . . . . 11 𝐾 = ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 𝐾 = ℝ)
4337, 42feq23d 6718 . . . . . . . . 9 (𝜑 → (𝐹: 𝐽 𝐾𝐹:𝑋⟶ℝ))
4433, 43mpbid 231 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
4544anim1i 613 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹:𝑋⟶ℝ ∧ 𝑥𝑋))
46 ffvelcdm 7090 . . . . . . 7 ((𝐹:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
47 recn 11230 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → (𝐹𝑥) ∈ ℂ)
4845, 46, 473syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4929, 48eqeltrd 2825 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) ∈ ℂ)
50 2ex 12322 . . . . . . . . . . 11 2 ∈ V
5150prid2 4769 . . . . . . . . . 10 2 ∈ {1, 2}
5218, 19ifcld 4576 . . . . . . . . . 10 (𝜑 → if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
53 eqeq1 2729 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 = 1 ↔ 2 = 1))
5453ifbid 4553 . . . . . . . . . . 11 (𝑘 = 2 → if(𝑘 = 1, 𝐹, 𝐺) = if(2 = 1, 𝐹, 𝐺))
5554, 2fvmptg 7002 . . . . . . . . . 10 ((2 ∈ {1, 2} ∧ if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
5651, 52, 55sylancr 585 . . . . . . . . 9 (𝜑 → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
57 1ne2 12453 . . . . . . . . . . 11 1 ≠ 2
5857nesymi 2987 . . . . . . . . . 10 ¬ 2 = 1
5958iffalsei 4540 . . . . . . . . 9 if(2 = 1, 𝐹, 𝐺) = 𝐺
6056, 59eqtrdi 2781 . . . . . . . 8 (𝜑 → (𝐴‘2) = 𝐺)
6160adantr 479 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘2) = 𝐺)
6261fveq1d 6898 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) = (𝐺𝑥))
6330, 31cnf 23194 . . . . . . . . . 10 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
6419, 63syl 17 . . . . . . . . 9 (𝜑𝐺: 𝐽 𝐾)
6537, 42feq23d 6718 . . . . . . . . 9 (𝜑 → (𝐺: 𝐽 𝐾𝐺:𝑋⟶ℝ))
6664, 65mpbid 231 . . . . . . . 8 (𝜑𝐺:𝑋⟶ℝ)
6766anim1i 613 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐺:𝑋⟶ℝ ∧ 𝑥𝑋))
68 ffvelcdm 7090 . . . . . . 7 ((𝐺:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ℝ)
69 recn 11230 . . . . . . 7 ((𝐺𝑥) ∈ ℝ → (𝐺𝑥) ∈ ℂ)
7067, 68, 693syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
7162, 70eqeltrd 2825 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) ∈ ℂ)
7257a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 1 ≠ 2)
73 fveq2 6896 . . . . . . 7 (𝑘 = 1 → (𝐴𝑘) = (𝐴‘1))
7473fveq1d 6898 . . . . . 6 (𝑘 = 1 → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
7574adantl 480 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 1) → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
76 fveq2 6896 . . . . . . 7 (𝑘 = 2 → (𝐴𝑘) = (𝐴‘2))
7776fveq1d 6898 . . . . . 6 (𝑘 = 2 → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
7877adantl 480 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 2) → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
799, 13, 14, 15, 49, 71, 72, 75, 78sumpair 44539 . . . 4 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)))
8029, 62oveq12d 7437 . . . 4 ((𝜑𝑥𝑋) → (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
8179, 80eqtrd 2765 . . 3 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
821, 81mpteq2da 5247 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))))
83 prfi 9348 . . . 4 {1, 2} ∈ Fin
8483a1i 11 . . 3 (𝜑 → {1, 2} ∈ Fin)
85 eqid 2725 . . . . . . . . . 10 𝑋 = 𝑋
8685ax-gen 1789 . . . . . . . . 9 𝑥 𝑋 = 𝑋
87 refsum2cnlem1.1 . . . . . . . . . . . 12 𝑥𝐴
88 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑘
8987, 88nffv 6906 . . . . . . . . . . 11 𝑥(𝐴𝑘)
90 refsum2cnlem1.2 . . . . . . . . . . 11 𝑥𝐹
9189, 90nfeq 2905 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐹
92 fveq1 6895 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐹 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
9392a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥)))
9491, 93ralrimi 3244 . . . . . . . . 9 ((𝐴𝑘) = 𝐹 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
95 mpteq12f 5237 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9686, 94, 95sylancr 585 . . . . . . . 8 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9796adantl 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
98 retopon 24724 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
9938, 98eqeltri 2821 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℝ)
10099a1i 11 . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘ℝ))
101 cnf2 23197 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶ℝ)
10234, 100, 18, 101syl3anc 1368 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℝ)
103102ffnd 6724 . . . . . . . . 9 (𝜑𝐹 Fn 𝑋)
10490dffn5f 6969 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
105103, 104sylib 217 . . . . . . . 8 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
106105adantr 479 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
10797, 106eqtr4d 2768 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐹)
10818adantr 479 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 ∈ (𝐽 Cn 𝐾))
109107, 108eqeltrd 2825 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
110109adantlr 713 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
111 refsum2cnlem1.3 . . . . . . . . . . 11 𝑥𝐺
11289, 111nfeq 2905 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐺
113 fveq1 6895 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐺 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
114113a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥)))
115112, 114ralrimi 3244 . . . . . . . . 9 ((𝐴𝑘) = 𝐺 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
116 mpteq12f 5237 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
11786, 115, 116sylancr 585 . . . . . . . 8 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
118117adantl 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
119 cnf2 23197 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋⟶ℝ)
12034, 100, 19, 119syl3anc 1368 . . . . . . . . . 10 (𝜑𝐺:𝑋⟶ℝ)
121120ffnd 6724 . . . . . . . . 9 (𝜑𝐺 Fn 𝑋)
122111dffn5f 6969 . . . . . . . . 9 (𝐺 Fn 𝑋𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
123121, 122sylib 217 . . . . . . . 8 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
124123adantr 479 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
125118, 124eqtr4d 2768 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐺)
12619adantr 479 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 ∈ (𝐽 Cn 𝐾))
127125, 126eqeltrd 2825 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
128127adantlr 713 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
129 simpr 483 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → 𝑘 ∈ {1, 2})
13018, 19ifcld 4576 . . . . . . . . 9 (𝜑 → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
131130adantr 479 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
1322fvmpt2 7015 . . . . . . . 8 ((𝑘 ∈ {1, 2} ∧ if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
133129, 131, 132syl2anc 582 . . . . . . 7 ((𝜑𝑘 ∈ {1, 2}) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
134 iftrue 4536 . . . . . . 7 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = 𝐹)
135133, 134sylan9eq 2785 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → (𝐴𝑘) = 𝐹)
136135orcd 871 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
137133adantr 479 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
138 neeq2 2993 . . . . . . . . . . . 12 (𝑘 = 2 → (1 ≠ 𝑘 ↔ 1 ≠ 2))
13957, 138mpbiri 257 . . . . . . . . . . 11 (𝑘 = 2 → 1 ≠ 𝑘)
140139necomd 2985 . . . . . . . . . 10 (𝑘 = 2 → 𝑘 ≠ 1)
141140neneqd 2934 . . . . . . . . 9 (𝑘 = 2 → ¬ 𝑘 = 1)
142141adantl 480 . . . . . . . 8 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ¬ 𝑘 = 1)
143142iffalsed 4541 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → if(𝑘 = 1, 𝐹, 𝐺) = 𝐺)
144137, 143eqtrd 2765 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = 𝐺)
145144olcd 872 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
146 elpri 4653 . . . . . 6 (𝑘 ∈ {1, 2} → (𝑘 = 1 ∨ 𝑘 = 2))
147146adantl 480 . . . . 5 ((𝜑𝑘 ∈ {1, 2}) → (𝑘 = 1 ∨ 𝑘 = 2))
148136, 145, 147mpjaodan 956 . . . 4 ((𝜑𝑘 ∈ {1, 2}) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
149110, 128, 148mpjaodan 956 . . 3 ((𝜑𝑘 ∈ {1, 2}) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
1501, 38, 34, 84, 149refsumcn 44534 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
15182, 150eqeltrrd 2826 1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  wal 1531   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  wne 2929  wral 3050  ifcif 4530  {cpr 4632   cuni 4909  cmpt 5232  ran crn 5679   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  1c1 11141   + caddc 11143  2c2 12300  (,)cioo 13359  Σcsu 15668  topGenctg 17422  TopOnctopon 22856   Cn ccn 23172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cn 23175  df-cnp 23176  df-tx 23510  df-hmeo 23703  df-xms 24270  df-ms 24271  df-tms 24272
This theorem is referenced by:  refsum2cn  44542
  Copyright terms: Public domain W3C validator