Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsum2cnlem1 Structured version   Visualization version   GIF version

Theorem refsum2cnlem1 42580
Description: This is the core Lemma for refsum2cn 42581: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsum2cnlem1.1 𝑥𝐴
refsum2cnlem1.2 𝑥𝐹
refsum2cnlem1.3 𝑥𝐺
refsum2cnlem1.4 𝑥𝜑
refsum2cnlem1.5 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
refsum2cnlem1.6 𝐾 = (topGen‘ran (,))
refsum2cnlem1.7 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsum2cnlem1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
refsum2cnlem1.9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsum2cnlem1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑘)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem refsum2cnlem1
StepHypRef Expression
1 refsum2cnlem1.4 . . 3 𝑥𝜑
2 refsum2cnlem1.5 . . . . . . . . 9 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
3 nfmpt1 5182 . . . . . . . . 9 𝑘(𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
42, 3nfcxfr 2905 . . . . . . . 8 𝑘𝐴
5 nfcv 2907 . . . . . . . 8 𝑘1
64, 5nffv 6784 . . . . . . 7 𝑘(𝐴‘1)
7 nfcv 2907 . . . . . . 7 𝑘𝑥
86, 7nffv 6784 . . . . . 6 𝑘((𝐴‘1)‘𝑥)
98a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘1)‘𝑥))
10 nfcv 2907 . . . . . . . 8 𝑘2
114, 10nffv 6784 . . . . . . 7 𝑘(𝐴‘2)
1211, 7nffv 6784 . . . . . 6 𝑘((𝐴‘2)‘𝑥)
1312a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘2)‘𝑥))
14 1cnd 10970 . . . . 5 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 2cnd 12051 . . . . 5 ((𝜑𝑥𝑋) → 2 ∈ ℂ)
16 1ex 10971 . . . . . . . . . . 11 1 ∈ V
1716prid1 4698 . . . . . . . . . 10 1 ∈ {1, 2}
18 refsum2cnlem1.8 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
19 refsum2cnlem1.9 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
2018, 19ifcld 4505 . . . . . . . . . 10 (𝜑 → if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
21 eqeq1 2742 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
2221ifbid 4482 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = if(1 = 1, 𝐹, 𝐺))
2322, 2fvmptg 6873 . . . . . . . . . 10 ((1 ∈ {1, 2} ∧ if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
2417, 20, 23sylancr 587 . . . . . . . . 9 (𝜑 → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
25 eqid 2738 . . . . . . . . . 10 1 = 1
2625iftruei 4466 . . . . . . . . 9 if(1 = 1, 𝐹, 𝐺) = 𝐹
2724, 26eqtrdi 2794 . . . . . . . 8 (𝜑 → (𝐴‘1) = 𝐹)
2827adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘1) = 𝐹)
2928fveq1d 6776 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) = (𝐹𝑥))
30 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
31 eqid 2738 . . . . . . . . . . 11 𝐾 = 𝐾
3230, 31cnf 22397 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
3318, 32syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
34 refsum2cnlem1.7 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
35 toponuni 22063 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3634, 35syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3736eqcomd 2744 . . . . . . . . . 10 (𝜑 𝐽 = 𝑋)
38 refsum2cnlem1.6 . . . . . . . . . . . . 13 𝐾 = (topGen‘ran (,))
3938unieqi 4852 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
40 uniretop 23926 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
4139, 40eqtr4i 2769 . . . . . . . . . . 11 𝐾 = ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 𝐾 = ℝ)
4337, 42feq23d 6595 . . . . . . . . 9 (𝜑 → (𝐹: 𝐽 𝐾𝐹:𝑋⟶ℝ))
4433, 43mpbid 231 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
4544anim1i 615 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹:𝑋⟶ℝ ∧ 𝑥𝑋))
46 ffvelrn 6959 . . . . . . 7 ((𝐹:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
47 recn 10961 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → (𝐹𝑥) ∈ ℂ)
4845, 46, 473syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4929, 48eqeltrd 2839 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) ∈ ℂ)
50 2ex 12050 . . . . . . . . . . 11 2 ∈ V
5150prid2 4699 . . . . . . . . . 10 2 ∈ {1, 2}
5218, 19ifcld 4505 . . . . . . . . . 10 (𝜑 → if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
53 eqeq1 2742 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 = 1 ↔ 2 = 1))
5453ifbid 4482 . . . . . . . . . . 11 (𝑘 = 2 → if(𝑘 = 1, 𝐹, 𝐺) = if(2 = 1, 𝐹, 𝐺))
5554, 2fvmptg 6873 . . . . . . . . . 10 ((2 ∈ {1, 2} ∧ if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
5651, 52, 55sylancr 587 . . . . . . . . 9 (𝜑 → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
57 1ne2 12181 . . . . . . . . . . 11 1 ≠ 2
5857nesymi 3001 . . . . . . . . . 10 ¬ 2 = 1
5958iffalsei 4469 . . . . . . . . 9 if(2 = 1, 𝐹, 𝐺) = 𝐺
6056, 59eqtrdi 2794 . . . . . . . 8 (𝜑 → (𝐴‘2) = 𝐺)
6160adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘2) = 𝐺)
6261fveq1d 6776 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) = (𝐺𝑥))
6330, 31cnf 22397 . . . . . . . . . 10 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
6419, 63syl 17 . . . . . . . . 9 (𝜑𝐺: 𝐽 𝐾)
6537, 42feq23d 6595 . . . . . . . . 9 (𝜑 → (𝐺: 𝐽 𝐾𝐺:𝑋⟶ℝ))
6664, 65mpbid 231 . . . . . . . 8 (𝜑𝐺:𝑋⟶ℝ)
6766anim1i 615 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐺:𝑋⟶ℝ ∧ 𝑥𝑋))
68 ffvelrn 6959 . . . . . . 7 ((𝐺:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ℝ)
69 recn 10961 . . . . . . 7 ((𝐺𝑥) ∈ ℝ → (𝐺𝑥) ∈ ℂ)
7067, 68, 693syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
7162, 70eqeltrd 2839 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) ∈ ℂ)
7257a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 1 ≠ 2)
73 fveq2 6774 . . . . . . 7 (𝑘 = 1 → (𝐴𝑘) = (𝐴‘1))
7473fveq1d 6776 . . . . . 6 (𝑘 = 1 → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
7574adantl 482 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 1) → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
76 fveq2 6774 . . . . . . 7 (𝑘 = 2 → (𝐴𝑘) = (𝐴‘2))
7776fveq1d 6776 . . . . . 6 (𝑘 = 2 → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
7877adantl 482 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 2) → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
799, 13, 14, 15, 49, 71, 72, 75, 78sumpair 42578 . . . 4 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)))
8029, 62oveq12d 7293 . . . 4 ((𝜑𝑥𝑋) → (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
8179, 80eqtrd 2778 . . 3 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
821, 81mpteq2da 5172 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))))
83 prfi 9089 . . . 4 {1, 2} ∈ Fin
8483a1i 11 . . 3 (𝜑 → {1, 2} ∈ Fin)
85 eqid 2738 . . . . . . . . . 10 𝑋 = 𝑋
8685ax-gen 1798 . . . . . . . . 9 𝑥 𝑋 = 𝑋
87 refsum2cnlem1.1 . . . . . . . . . . . 12 𝑥𝐴
88 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑘
8987, 88nffv 6784 . . . . . . . . . . 11 𝑥(𝐴𝑘)
90 refsum2cnlem1.2 . . . . . . . . . . 11 𝑥𝐹
9189, 90nfeq 2920 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐹
92 fveq1 6773 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐹 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
9392a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥)))
9491, 93ralrimi 3141 . . . . . . . . 9 ((𝐴𝑘) = 𝐹 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
95 mpteq12f 5162 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9686, 94, 95sylancr 587 . . . . . . . 8 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9796adantl 482 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
98 retopon 23927 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
9938, 98eqeltri 2835 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℝ)
10099a1i 11 . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘ℝ))
101 cnf2 22400 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶ℝ)
10234, 100, 18, 101syl3anc 1370 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℝ)
103102ffnd 6601 . . . . . . . . 9 (𝜑𝐹 Fn 𝑋)
10490dffn5f 6840 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
105103, 104sylib 217 . . . . . . . 8 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
106105adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
10797, 106eqtr4d 2781 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐹)
10818adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 ∈ (𝐽 Cn 𝐾))
109107, 108eqeltrd 2839 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
110109adantlr 712 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
111 refsum2cnlem1.3 . . . . . . . . . . 11 𝑥𝐺
11289, 111nfeq 2920 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐺
113 fveq1 6773 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐺 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
114113a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥)))
115112, 114ralrimi 3141 . . . . . . . . 9 ((𝐴𝑘) = 𝐺 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
116 mpteq12f 5162 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
11786, 115, 116sylancr 587 . . . . . . . 8 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
118117adantl 482 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
119 cnf2 22400 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋⟶ℝ)
12034, 100, 19, 119syl3anc 1370 . . . . . . . . . 10 (𝜑𝐺:𝑋⟶ℝ)
121120ffnd 6601 . . . . . . . . 9 (𝜑𝐺 Fn 𝑋)
122111dffn5f 6840 . . . . . . . . 9 (𝐺 Fn 𝑋𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
123121, 122sylib 217 . . . . . . . 8 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
124123adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
125118, 124eqtr4d 2781 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐺)
12619adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 ∈ (𝐽 Cn 𝐾))
127125, 126eqeltrd 2839 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
128127adantlr 712 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
129 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → 𝑘 ∈ {1, 2})
13018, 19ifcld 4505 . . . . . . . . 9 (𝜑 → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
131130adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
1322fvmpt2 6886 . . . . . . . 8 ((𝑘 ∈ {1, 2} ∧ if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
133129, 131, 132syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ {1, 2}) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
134 iftrue 4465 . . . . . . 7 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = 𝐹)
135133, 134sylan9eq 2798 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → (𝐴𝑘) = 𝐹)
136135orcd 870 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
137133adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
138 neeq2 3007 . . . . . . . . . . . 12 (𝑘 = 2 → (1 ≠ 𝑘 ↔ 1 ≠ 2))
13957, 138mpbiri 257 . . . . . . . . . . 11 (𝑘 = 2 → 1 ≠ 𝑘)
140139necomd 2999 . . . . . . . . . 10 (𝑘 = 2 → 𝑘 ≠ 1)
141140neneqd 2948 . . . . . . . . 9 (𝑘 = 2 → ¬ 𝑘 = 1)
142141adantl 482 . . . . . . . 8 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ¬ 𝑘 = 1)
143142iffalsed 4470 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → if(𝑘 = 1, 𝐹, 𝐺) = 𝐺)
144137, 143eqtrd 2778 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = 𝐺)
145144olcd 871 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
146 elpri 4583 . . . . . 6 (𝑘 ∈ {1, 2} → (𝑘 = 1 ∨ 𝑘 = 2))
147146adantl 482 . . . . 5 ((𝜑𝑘 ∈ {1, 2}) → (𝑘 = 1 ∨ 𝑘 = 2))
148136, 145, 147mpjaodan 956 . . . 4 ((𝜑𝑘 ∈ {1, 2}) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
149110, 128, 148mpjaodan 956 . . 3 ((𝜑𝑘 ∈ {1, 2}) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
1501, 38, 34, 84, 149refsumcn 42573 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
15182, 150eqeltrrd 2840 1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wal 1537   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  wne 2943  wral 3064  ifcif 4459  {cpr 4563   cuni 4839  cmpt 5157  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  1c1 10872   + caddc 10874  2c2 12028  (,)cioo 13079  Σcsu 15397  topGenctg 17148  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475
This theorem is referenced by:  refsum2cn  42581
  Copyright terms: Public domain W3C validator