Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oms0 Structured version   Visualization version   GIF version

Theorem oms0 31454
Description: A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
oms.d (𝜑 → ∅ ∈ dom 𝑅)
oms.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
oms0 (𝜑 → (𝑀‘∅) = 0)

Proof of Theorem oms0
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
21fveq1i 6664 . 2 (𝑀‘∅) = ((toOMeas‘𝑅)‘∅)
3 oms.o . . . 4 (𝜑𝑄𝑉)
4 oms.r . . . 4 (𝜑𝑅:𝑄⟶(0[,]+∞))
5 0ss 4347 . . . . 5 ∅ ⊆ dom 𝑅
64fdmd 6516 . . . . . 6 (𝜑 → dom 𝑅 = 𝑄)
76unieqd 4840 . . . . 5 (𝜑 dom 𝑅 = 𝑄)
85, 7sseqtrid 4016 . . . 4 (𝜑 → ∅ ⊆ 𝑄)
9 omsfval 31451 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ ∅ ⊆ 𝑄) → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
103, 4, 8, 9syl3anc 1363 . . 3 (𝜑 → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
11 iccssxr 12807 . . . . . 6 (0[,]+∞) ⊆ ℝ*
12 xrltso 12522 . . . . . 6 < Or ℝ*
13 soss 5486 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
1411, 12, 13mp2 9 . . . . 5 < Or (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
16 0e0iccpnf 12835 . . . . 5 0 ∈ (0[,]+∞)
1716a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
18 oms.d . . . . . . . . . 10 (𝜑 → ∅ ∈ dom 𝑅)
1918snssd 4734 . . . . . . . . 9 (𝜑 → {∅} ⊆ dom 𝑅)
20 p0ex 5275 . . . . . . . . . 10 {∅} ∈ V
2120elpw 4542 . . . . . . . . 9 ({∅} ∈ 𝒫 dom 𝑅 ↔ {∅} ⊆ dom 𝑅)
2219, 21sylibr 235 . . . . . . . 8 (𝜑 → {∅} ∈ 𝒫 dom 𝑅)
23 0ss 4347 . . . . . . . . 9 ∅ ⊆ {∅}
24 0ex 5202 . . . . . . . . . 10 ∅ ∈ V
25 snct 30375 . . . . . . . . . 10 (∅ ∈ V → {∅} ≼ ω)
2624, 25ax-mp 5 . . . . . . . . 9 {∅} ≼ ω
2723, 26pm3.2i 471 . . . . . . . 8 (∅ ⊆ {∅} ∧ {∅} ≼ ω)
2822, 27jctir 521 . . . . . . 7 (𝜑 → ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
29 unieq 4838 . . . . . . . . . 10 (𝑧 = {∅} → 𝑧 = {∅})
3029sseq2d 3996 . . . . . . . . 9 (𝑧 = {∅} → (∅ ⊆ 𝑧 ↔ ∅ ⊆ {∅}))
31 breq1 5060 . . . . . . . . 9 (𝑧 = {∅} → (𝑧 ≼ ω ↔ {∅} ≼ ω))
3230, 31anbi12d 630 . . . . . . . 8 (𝑧 = {∅} → ((∅ ⊆ 𝑧𝑧 ≼ ω) ↔ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3332elrab 3677 . . . . . . 7 ({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↔ ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3428, 33sylibr 235 . . . . . 6 (𝜑 → {∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
35 simpr 485 . . . . . . . . . 10 ((𝜑𝑦 = ∅) → 𝑦 = ∅)
3635fveq2d 6667 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅𝑦) = (𝑅‘∅))
37 oms.0 . . . . . . . . . 10 (𝜑 → (𝑅‘∅) = 0)
3837adantr 481 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅‘∅) = 0)
3936, 38eqtrd 2853 . . . . . . . 8 ((𝜑𝑦 = ∅) → (𝑅𝑦) = 0)
4039, 18, 17esumsn 31223 . . . . . . 7 (𝜑 → Σ*𝑦 ∈ {∅} (𝑅𝑦) = 0)
4140eqcomd 2824 . . . . . 6 (𝜑 → 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦))
42 esumeq1 31192 . . . . . . 7 (𝑥 = {∅} → Σ*𝑦𝑥(𝑅𝑦) = Σ*𝑦 ∈ {∅} (𝑅𝑦))
4342rspceeqv 3635 . . . . . 6 (({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ∧ 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4434, 41, 43syl2anc 584 . . . . 5 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
45 0xr 10676 . . . . . 6 0 ∈ ℝ*
46 eqid 2818 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
4746elrnmpt 5821 . . . . . 6 (0 ∈ ℝ* → (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦)))
4845, 47ax-mp 5 . . . . 5 (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4944, 48sylibr 235 . . . 4 (𝜑 → 0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
50 nfv 1906 . . . . . . . 8 𝑥𝜑
51 nfmpt1 5155 . . . . . . . . . 10 𝑥(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5251nfrn 5817 . . . . . . . . 9 𝑥ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5352nfcri 2968 . . . . . . . 8 𝑥 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5450, 53nfan 1891 . . . . . . 7 𝑥(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
55 simpr 485 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
56 vex 3495 . . . . . . . . 9 𝑥 ∈ V
57 nfv 1906 . . . . . . . . . . . . 13 𝑦𝜑
58 nfcv 2974 . . . . . . . . . . . . . . . 16 𝑦{𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
59 nfcv 2974 . . . . . . . . . . . . . . . . 17 𝑦𝑥
6059nfesum1 31198 . . . . . . . . . . . . . . . 16 𝑦Σ*𝑦𝑥(𝑅𝑦)
6158, 60nfmpt 5154 . . . . . . . . . . . . . . 15 𝑦(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6261nfrn 5817 . . . . . . . . . . . . . 14 𝑦ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6362nfcri 2968 . . . . . . . . . . . . 13 𝑦 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6457, 63nfan 1891 . . . . . . . . . . . 12 𝑦(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
65 nfv 1906 . . . . . . . . . . . 12 𝑦 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
6664, 65nfan 1891 . . . . . . . . . . 11 𝑦((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
6760nfeq2 2992 . . . . . . . . . . 11 𝑦 𝑎 = Σ*𝑦𝑥(𝑅𝑦)
6866, 67nfan 1891 . . . . . . . . . 10 𝑦(((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
694ad4antr 728 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
70 ssrab2 4053 . . . . . . . . . . . . . . . 16 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
71 simpllr 772 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
7270, 71sseldi 3962 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
736pweqd 4540 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 dom 𝑅 = 𝒫 𝑄)
7473ad4antr 728 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝒫 dom 𝑅 = 𝒫 𝑄)
7572, 74eleqtrd 2912 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 𝑄)
7675elpwid 4549 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥𝑄)
77 simpr 485 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑥)
7876, 77sseldd 3965 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑄)
7969, 78ffvelrnd 6844 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
8079ex 413 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → (𝑦𝑥 → (𝑅𝑦) ∈ (0[,]+∞)))
8168, 80ralrimi 3213 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
8259esumcl 31188 . . . . . . . . 9 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8356, 81, 82sylancr 587 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8455, 83eqeltrd 2910 . . . . . . 7 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 ∈ (0[,]+∞))
85 vex 3495 . . . . . . . . . 10 𝑎 ∈ V
8646elrnmpt 5821 . . . . . . . . . 10 (𝑎 ∈ V → (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦)))
8785, 86ax-mp 5 . . . . . . . . 9 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8887biimpi 217 . . . . . . . 8 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8988adantl 482 . . . . . . 7 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
9054, 84, 89r19.29af 3328 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ (0[,]+∞))
91 pnfxr 10683 . . . . . . 7 +∞ ∈ ℝ*
92 iccgelb 12781 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑎)
9345, 91, 92mp3an12 1442 . . . . . 6 (𝑎 ∈ (0[,]+∞) → 0 ≤ 𝑎)
9490, 93syl 17 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 0 ≤ 𝑎)
9511, 90sseldi 3962 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ ℝ*)
96 xrlenlt 10694 . . . . . . 7 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (0 ≤ 𝑎 ↔ ¬ 𝑎 < 0))
9796bicomd 224 . . . . . 6 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9845, 95, 97sylancr 587 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9994, 98mpbird 258 . . . 4 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ¬ 𝑎 < 0)
10015, 17, 49, 99infmin 8946 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) = 0)
10110, 100eqtrd 2853 . 2 (𝜑 → ((toOMeas‘𝑅)‘∅) = 0)
1022, 101syl5eq 2865 1 (𝜑 → (𝑀‘∅) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {crab 3139  Vcvv 3492  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   cuni 4830   class class class wbr 5057  cmpt 5137   Or wor 5466  dom cdm 5548  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7145  ωcom 7569  cdom 8495  infcinf 8893  0cc0 10525  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  [,]cicc 12729  Σ*cesum 31185  toOMeascoms 31448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-xadd 12496  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-tset 16572  df-ple 16573  df-ds 16575  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-ordt 16762  df-xrs 16763  df-mre 16845  df-mrc 16846  df-acs 16848  df-ps 17798  df-tsr 17799  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-fbas 20470  df-fg 20471  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-ntr 21556  df-nei 21634  df-cn 21763  df-haus 21851  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-tsms 22662  df-esum 31186  df-oms 31449
This theorem is referenced by:  omsmeas  31480
  Copyright terms: Public domain W3C validator