Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oms0 Structured version   Visualization version   GIF version

Theorem oms0 32897
Description: A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
oms.d (𝜑 → ∅ ∈ dom 𝑅)
oms.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
oms0 (𝜑 → (𝑀‘∅) = 0)

Proof of Theorem oms0
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
21fveq1i 6843 . 2 (𝑀‘∅) = ((toOMeas‘𝑅)‘∅)
3 oms.o . . . 4 (𝜑𝑄𝑉)
4 oms.r . . . 4 (𝜑𝑅:𝑄⟶(0[,]+∞))
5 0ss 4356 . . . . 5 ∅ ⊆ dom 𝑅
64fdmd 6679 . . . . . 6 (𝜑 → dom 𝑅 = 𝑄)
76unieqd 4879 . . . . 5 (𝜑 dom 𝑅 = 𝑄)
85, 7sseqtrid 3996 . . . 4 (𝜑 → ∅ ⊆ 𝑄)
9 omsfval 32894 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ ∅ ⊆ 𝑄) → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
103, 4, 8, 9syl3anc 1371 . . 3 (𝜑 → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
11 iccssxr 13347 . . . . . 6 (0[,]+∞) ⊆ ℝ*
12 xrltso 13060 . . . . . 6 < Or ℝ*
13 soss 5565 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
1411, 12, 13mp2 9 . . . . 5 < Or (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
16 0e0iccpnf 13376 . . . . 5 0 ∈ (0[,]+∞)
1716a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
18 oms.d . . . . . . . . . 10 (𝜑 → ∅ ∈ dom 𝑅)
1918snssd 4769 . . . . . . . . 9 (𝜑 → {∅} ⊆ dom 𝑅)
20 p0ex 5339 . . . . . . . . . 10 {∅} ∈ V
2120elpw 4564 . . . . . . . . 9 ({∅} ∈ 𝒫 dom 𝑅 ↔ {∅} ⊆ dom 𝑅)
2219, 21sylibr 233 . . . . . . . 8 (𝜑 → {∅} ∈ 𝒫 dom 𝑅)
23 0ss 4356 . . . . . . . . 9 ∅ ⊆ {∅}
24 0ex 5264 . . . . . . . . . 10 ∅ ∈ V
25 snct 31630 . . . . . . . . . 10 (∅ ∈ V → {∅} ≼ ω)
2624, 25ax-mp 5 . . . . . . . . 9 {∅} ≼ ω
2723, 26pm3.2i 471 . . . . . . . 8 (∅ ⊆ {∅} ∧ {∅} ≼ ω)
2822, 27jctir 521 . . . . . . 7 (𝜑 → ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
29 unieq 4876 . . . . . . . . . 10 (𝑧 = {∅} → 𝑧 = {∅})
3029sseq2d 3976 . . . . . . . . 9 (𝑧 = {∅} → (∅ ⊆ 𝑧 ↔ ∅ ⊆ {∅}))
31 breq1 5108 . . . . . . . . 9 (𝑧 = {∅} → (𝑧 ≼ ω ↔ {∅} ≼ ω))
3230, 31anbi12d 631 . . . . . . . 8 (𝑧 = {∅} → ((∅ ⊆ 𝑧𝑧 ≼ ω) ↔ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3332elrab 3645 . . . . . . 7 ({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↔ ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3428, 33sylibr 233 . . . . . 6 (𝜑 → {∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
35 simpr 485 . . . . . . . . . 10 ((𝜑𝑦 = ∅) → 𝑦 = ∅)
3635fveq2d 6846 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅𝑦) = (𝑅‘∅))
37 oms.0 . . . . . . . . . 10 (𝜑 → (𝑅‘∅) = 0)
3837adantr 481 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅‘∅) = 0)
3936, 38eqtrd 2776 . . . . . . . 8 ((𝜑𝑦 = ∅) → (𝑅𝑦) = 0)
4039, 18, 17esumsn 32664 . . . . . . 7 (𝜑 → Σ*𝑦 ∈ {∅} (𝑅𝑦) = 0)
4140eqcomd 2742 . . . . . 6 (𝜑 → 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦))
42 esumeq1 32633 . . . . . . 7 (𝑥 = {∅} → Σ*𝑦𝑥(𝑅𝑦) = Σ*𝑦 ∈ {∅} (𝑅𝑦))
4342rspceeqv 3595 . . . . . 6 (({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ∧ 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4434, 41, 43syl2anc 584 . . . . 5 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
45 0xr 11202 . . . . . 6 0 ∈ ℝ*
46 eqid 2736 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
4746elrnmpt 5911 . . . . . 6 (0 ∈ ℝ* → (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦)))
4845, 47ax-mp 5 . . . . 5 (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4944, 48sylibr 233 . . . 4 (𝜑 → 0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
50 nfv 1917 . . . . . . . 8 𝑥𝜑
51 nfmpt1 5213 . . . . . . . . . 10 𝑥(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5251nfrn 5907 . . . . . . . . 9 𝑥ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5352nfcri 2894 . . . . . . . 8 𝑥 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5450, 53nfan 1902 . . . . . . 7 𝑥(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
55 simpr 485 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
56 vex 3449 . . . . . . . . 9 𝑥 ∈ V
57 nfv 1917 . . . . . . . . . . . . 13 𝑦𝜑
58 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑦{𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
59 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑦𝑥
6059nfesum1 32639 . . . . . . . . . . . . . . . 16 𝑦Σ*𝑦𝑥(𝑅𝑦)
6158, 60nfmpt 5212 . . . . . . . . . . . . . . 15 𝑦(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6261nfrn 5907 . . . . . . . . . . . . . 14 𝑦ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6362nfcri 2894 . . . . . . . . . . . . 13 𝑦 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6457, 63nfan 1902 . . . . . . . . . . . 12 𝑦(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
65 nfv 1917 . . . . . . . . . . . 12 𝑦 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
6664, 65nfan 1902 . . . . . . . . . . 11 𝑦((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
6760nfeq2 2924 . . . . . . . . . . 11 𝑦 𝑎 = Σ*𝑦𝑥(𝑅𝑦)
6866, 67nfan 1902 . . . . . . . . . 10 𝑦(((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
694ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
70 ssrab2 4037 . . . . . . . . . . . . . . . 16 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
71 simpllr 774 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
7270, 71sselid 3942 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
736pweqd 4577 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 dom 𝑅 = 𝒫 𝑄)
7473ad4antr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝒫 dom 𝑅 = 𝒫 𝑄)
7572, 74eleqtrd 2840 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 𝑄)
7675elpwid 4569 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥𝑄)
77 simpr 485 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑥)
7876, 77sseldd 3945 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑄)
7969, 78ffvelcdmd 7036 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
8079ex 413 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → (𝑦𝑥 → (𝑅𝑦) ∈ (0[,]+∞)))
8168, 80ralrimi 3240 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
8259esumcl 32629 . . . . . . . . 9 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8356, 81, 82sylancr 587 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8455, 83eqeltrd 2838 . . . . . . 7 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 ∈ (0[,]+∞))
85 vex 3449 . . . . . . . . . 10 𝑎 ∈ V
8646elrnmpt 5911 . . . . . . . . . 10 (𝑎 ∈ V → (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦)))
8785, 86ax-mp 5 . . . . . . . . 9 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8887biimpi 215 . . . . . . . 8 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8988adantl 482 . . . . . . 7 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
9054, 84, 89r19.29af 3251 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ (0[,]+∞))
91 pnfxr 11209 . . . . . . 7 +∞ ∈ ℝ*
92 iccgelb 13320 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑎)
9345, 91, 92mp3an12 1451 . . . . . 6 (𝑎 ∈ (0[,]+∞) → 0 ≤ 𝑎)
9490, 93syl 17 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 0 ≤ 𝑎)
9511, 90sselid 3942 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ ℝ*)
96 xrlenlt 11220 . . . . . . 7 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (0 ≤ 𝑎 ↔ ¬ 𝑎 < 0))
9796bicomd 222 . . . . . 6 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9845, 95, 97sylancr 587 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9994, 98mpbird 256 . . . 4 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ¬ 𝑎 < 0)
10015, 17, 49, 99infmin 9430 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) = 0)
10110, 100eqtrd 2776 . 2 (𝜑 → ((toOMeas‘𝑅)‘∅) = 0)
1022, 101eqtrid 2788 1 (𝜑 → (𝑀‘∅) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188   Or wor 5544  dom cdm 5633  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  ωcom 7802  cdom 8881  infcinf 9377  0cc0 11051  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  [,]cicc 13267  Σ*cesum 32626  toOMeascoms 32891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-xadd 13034  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-tset 17152  df-ple 17153  df-ds 17155  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-ordt 17383  df-xrs 17384  df-mre 17466  df-mrc 17467  df-acs 17469  df-ps 18455  df-tsr 18456  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-nei 22449  df-cn 22578  df-haus 22666  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tsms 23478  df-esum 32627  df-oms 32892
This theorem is referenced by:  omsmeas  32923
  Copyright terms: Public domain W3C validator