Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oms0 Structured version   Visualization version   GIF version

Theorem oms0 32164
Description: A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
oms.d (𝜑 → ∅ ∈ dom 𝑅)
oms.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
oms0 (𝜑 → (𝑀‘∅) = 0)

Proof of Theorem oms0
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
21fveq1i 6757 . 2 (𝑀‘∅) = ((toOMeas‘𝑅)‘∅)
3 oms.o . . . 4 (𝜑𝑄𝑉)
4 oms.r . . . 4 (𝜑𝑅:𝑄⟶(0[,]+∞))
5 0ss 4327 . . . . 5 ∅ ⊆ dom 𝑅
64fdmd 6595 . . . . . 6 (𝜑 → dom 𝑅 = 𝑄)
76unieqd 4850 . . . . 5 (𝜑 dom 𝑅 = 𝑄)
85, 7sseqtrid 3969 . . . 4 (𝜑 → ∅ ⊆ 𝑄)
9 omsfval 32161 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ ∅ ⊆ 𝑄) → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
103, 4, 8, 9syl3anc 1369 . . 3 (𝜑 → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
11 iccssxr 13091 . . . . . 6 (0[,]+∞) ⊆ ℝ*
12 xrltso 12804 . . . . . 6 < Or ℝ*
13 soss 5514 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
1411, 12, 13mp2 9 . . . . 5 < Or (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
16 0e0iccpnf 13120 . . . . 5 0 ∈ (0[,]+∞)
1716a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
18 oms.d . . . . . . . . . 10 (𝜑 → ∅ ∈ dom 𝑅)
1918snssd 4739 . . . . . . . . 9 (𝜑 → {∅} ⊆ dom 𝑅)
20 p0ex 5302 . . . . . . . . . 10 {∅} ∈ V
2120elpw 4534 . . . . . . . . 9 ({∅} ∈ 𝒫 dom 𝑅 ↔ {∅} ⊆ dom 𝑅)
2219, 21sylibr 233 . . . . . . . 8 (𝜑 → {∅} ∈ 𝒫 dom 𝑅)
23 0ss 4327 . . . . . . . . 9 ∅ ⊆ {∅}
24 0ex 5226 . . . . . . . . . 10 ∅ ∈ V
25 snct 30950 . . . . . . . . . 10 (∅ ∈ V → {∅} ≼ ω)
2624, 25ax-mp 5 . . . . . . . . 9 {∅} ≼ ω
2723, 26pm3.2i 470 . . . . . . . 8 (∅ ⊆ {∅} ∧ {∅} ≼ ω)
2822, 27jctir 520 . . . . . . 7 (𝜑 → ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
29 unieq 4847 . . . . . . . . . 10 (𝑧 = {∅} → 𝑧 = {∅})
3029sseq2d 3949 . . . . . . . . 9 (𝑧 = {∅} → (∅ ⊆ 𝑧 ↔ ∅ ⊆ {∅}))
31 breq1 5073 . . . . . . . . 9 (𝑧 = {∅} → (𝑧 ≼ ω ↔ {∅} ≼ ω))
3230, 31anbi12d 630 . . . . . . . 8 (𝑧 = {∅} → ((∅ ⊆ 𝑧𝑧 ≼ ω) ↔ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3332elrab 3617 . . . . . . 7 ({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↔ ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3428, 33sylibr 233 . . . . . 6 (𝜑 → {∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
35 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 = ∅) → 𝑦 = ∅)
3635fveq2d 6760 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅𝑦) = (𝑅‘∅))
37 oms.0 . . . . . . . . . 10 (𝜑 → (𝑅‘∅) = 0)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅‘∅) = 0)
3936, 38eqtrd 2778 . . . . . . . 8 ((𝜑𝑦 = ∅) → (𝑅𝑦) = 0)
4039, 18, 17esumsn 31933 . . . . . . 7 (𝜑 → Σ*𝑦 ∈ {∅} (𝑅𝑦) = 0)
4140eqcomd 2744 . . . . . 6 (𝜑 → 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦))
42 esumeq1 31902 . . . . . . 7 (𝑥 = {∅} → Σ*𝑦𝑥(𝑅𝑦) = Σ*𝑦 ∈ {∅} (𝑅𝑦))
4342rspceeqv 3567 . . . . . 6 (({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ∧ 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4434, 41, 43syl2anc 583 . . . . 5 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
45 0xr 10953 . . . . . 6 0 ∈ ℝ*
46 eqid 2738 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
4746elrnmpt 5854 . . . . . 6 (0 ∈ ℝ* → (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦)))
4845, 47ax-mp 5 . . . . 5 (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4944, 48sylibr 233 . . . 4 (𝜑 → 0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
50 nfv 1918 . . . . . . . 8 𝑥𝜑
51 nfmpt1 5178 . . . . . . . . . 10 𝑥(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5251nfrn 5850 . . . . . . . . 9 𝑥ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5352nfcri 2893 . . . . . . . 8 𝑥 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5450, 53nfan 1903 . . . . . . 7 𝑥(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
55 simpr 484 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
56 vex 3426 . . . . . . . . 9 𝑥 ∈ V
57 nfv 1918 . . . . . . . . . . . . 13 𝑦𝜑
58 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑦{𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
59 nfcv 2906 . . . . . . . . . . . . . . . . 17 𝑦𝑥
6059nfesum1 31908 . . . . . . . . . . . . . . . 16 𝑦Σ*𝑦𝑥(𝑅𝑦)
6158, 60nfmpt 5177 . . . . . . . . . . . . . . 15 𝑦(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6261nfrn 5850 . . . . . . . . . . . . . 14 𝑦ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6362nfcri 2893 . . . . . . . . . . . . 13 𝑦 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6457, 63nfan 1903 . . . . . . . . . . . 12 𝑦(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
65 nfv 1918 . . . . . . . . . . . 12 𝑦 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
6664, 65nfan 1903 . . . . . . . . . . 11 𝑦((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
6760nfeq2 2923 . . . . . . . . . . 11 𝑦 𝑎 = Σ*𝑦𝑥(𝑅𝑦)
6866, 67nfan 1903 . . . . . . . . . 10 𝑦(((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
694ad4antr 728 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
70 ssrab2 4009 . . . . . . . . . . . . . . . 16 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
71 simpllr 772 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
7270, 71sselid 3915 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
736pweqd 4549 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 dom 𝑅 = 𝒫 𝑄)
7473ad4antr 728 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝒫 dom 𝑅 = 𝒫 𝑄)
7572, 74eleqtrd 2841 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 𝑄)
7675elpwid 4541 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥𝑄)
77 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑥)
7876, 77sseldd 3918 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑄)
7969, 78ffvelrnd 6944 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
8079ex 412 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → (𝑦𝑥 → (𝑅𝑦) ∈ (0[,]+∞)))
8168, 80ralrimi 3139 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
8259esumcl 31898 . . . . . . . . 9 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8356, 81, 82sylancr 586 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8455, 83eqeltrd 2839 . . . . . . 7 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 ∈ (0[,]+∞))
85 vex 3426 . . . . . . . . . 10 𝑎 ∈ V
8646elrnmpt 5854 . . . . . . . . . 10 (𝑎 ∈ V → (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦)))
8785, 86ax-mp 5 . . . . . . . . 9 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8887biimpi 215 . . . . . . . 8 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8988adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
9054, 84, 89r19.29af 3259 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ (0[,]+∞))
91 pnfxr 10960 . . . . . . 7 +∞ ∈ ℝ*
92 iccgelb 13064 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑎)
9345, 91, 92mp3an12 1449 . . . . . 6 (𝑎 ∈ (0[,]+∞) → 0 ≤ 𝑎)
9490, 93syl 17 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 0 ≤ 𝑎)
9511, 90sselid 3915 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ ℝ*)
96 xrlenlt 10971 . . . . . . 7 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (0 ≤ 𝑎 ↔ ¬ 𝑎 < 0))
9796bicomd 222 . . . . . 6 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9845, 95, 97sylancr 586 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9994, 98mpbird 256 . . . 4 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ¬ 𝑎 < 0)
10015, 17, 49, 99infmin 9183 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) = 0)
10110, 100eqtrd 2778 . 2 (𝜑 → ((toOMeas‘𝑅)‘∅) = 0)
1022, 101syl5eq 2791 1 (𝜑 → (𝑀‘∅) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153   Or wor 5493  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  infcinf 9130  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,]cicc 13011  Σ*cesum 31895  toOMeascoms 32158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-xadd 12778  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-tset 16907  df-ple 16908  df-ds 16910  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-ordt 17129  df-xrs 17130  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186  df-esum 31896  df-oms 32159
This theorem is referenced by:  omsmeas  32190
  Copyright terms: Public domain W3C validator