Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oms0 Structured version   Visualization version   GIF version

Theorem oms0 34329
Description: A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
oms.d (𝜑 → ∅ ∈ dom 𝑅)
oms.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
oms0 (𝜑 → (𝑀‘∅) = 0)

Proof of Theorem oms0
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
21fveq1i 6877 . 2 (𝑀‘∅) = ((toOMeas‘𝑅)‘∅)
3 oms.o . . . 4 (𝜑𝑄𝑉)
4 oms.r . . . 4 (𝜑𝑅:𝑄⟶(0[,]+∞))
5 0ss 4375 . . . . 5 ∅ ⊆ dom 𝑅
64fdmd 6716 . . . . . 6 (𝜑 → dom 𝑅 = 𝑄)
76unieqd 4896 . . . . 5 (𝜑 dom 𝑅 = 𝑄)
85, 7sseqtrid 4001 . . . 4 (𝜑 → ∅ ⊆ 𝑄)
9 omsfval 34326 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ ∅ ⊆ 𝑄) → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
103, 4, 8, 9syl3anc 1373 . . 3 (𝜑 → ((toOMeas‘𝑅)‘∅) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
11 iccssxr 13447 . . . . . 6 (0[,]+∞) ⊆ ℝ*
12 xrltso 13157 . . . . . 6 < Or ℝ*
13 soss 5581 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
1411, 12, 13mp2 9 . . . . 5 < Or (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
16 0e0iccpnf 13476 . . . . 5 0 ∈ (0[,]+∞)
1716a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
18 oms.d . . . . . . . . . 10 (𝜑 → ∅ ∈ dom 𝑅)
1918snssd 4785 . . . . . . . . 9 (𝜑 → {∅} ⊆ dom 𝑅)
20 p0ex 5354 . . . . . . . . . 10 {∅} ∈ V
2120elpw 4579 . . . . . . . . 9 ({∅} ∈ 𝒫 dom 𝑅 ↔ {∅} ⊆ dom 𝑅)
2219, 21sylibr 234 . . . . . . . 8 (𝜑 → {∅} ∈ 𝒫 dom 𝑅)
23 0ss 4375 . . . . . . . . 9 ∅ ⊆ {∅}
24 0ex 5277 . . . . . . . . . 10 ∅ ∈ V
25 snct 32691 . . . . . . . . . 10 (∅ ∈ V → {∅} ≼ ω)
2624, 25ax-mp 5 . . . . . . . . 9 {∅} ≼ ω
2723, 26pm3.2i 470 . . . . . . . 8 (∅ ⊆ {∅} ∧ {∅} ≼ ω)
2822, 27jctir 520 . . . . . . 7 (𝜑 → ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
29 unieq 4894 . . . . . . . . . 10 (𝑧 = {∅} → 𝑧 = {∅})
3029sseq2d 3991 . . . . . . . . 9 (𝑧 = {∅} → (∅ ⊆ 𝑧 ↔ ∅ ⊆ {∅}))
31 breq1 5122 . . . . . . . . 9 (𝑧 = {∅} → (𝑧 ≼ ω ↔ {∅} ≼ ω))
3230, 31anbi12d 632 . . . . . . . 8 (𝑧 = {∅} → ((∅ ⊆ 𝑧𝑧 ≼ ω) ↔ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3332elrab 3671 . . . . . . 7 ({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↔ ({∅} ∈ 𝒫 dom 𝑅 ∧ (∅ ⊆ {∅} ∧ {∅} ≼ ω)))
3428, 33sylibr 234 . . . . . 6 (𝜑 → {∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
35 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 = ∅) → 𝑦 = ∅)
3635fveq2d 6880 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅𝑦) = (𝑅‘∅))
37 oms.0 . . . . . . . . . 10 (𝜑 → (𝑅‘∅) = 0)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑦 = ∅) → (𝑅‘∅) = 0)
3936, 38eqtrd 2770 . . . . . . . 8 ((𝜑𝑦 = ∅) → (𝑅𝑦) = 0)
4039, 18, 17esumsn 34096 . . . . . . 7 (𝜑 → Σ*𝑦 ∈ {∅} (𝑅𝑦) = 0)
4140eqcomd 2741 . . . . . 6 (𝜑 → 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦))
42 esumeq1 34065 . . . . . . 7 (𝑥 = {∅} → Σ*𝑦𝑥(𝑅𝑦) = Σ*𝑦 ∈ {∅} (𝑅𝑦))
4342rspceeqv 3624 . . . . . 6 (({∅} ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ∧ 0 = Σ*𝑦 ∈ {∅} (𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4434, 41, 43syl2anc 584 . . . . 5 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
45 0xr 11282 . . . . . 6 0 ∈ ℝ*
46 eqid 2735 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
4746elrnmpt 5938 . . . . . 6 (0 ∈ ℝ* → (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦)))
4845, 47ax-mp 5 . . . . 5 (0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}0 = Σ*𝑦𝑥(𝑅𝑦))
4944, 48sylibr 234 . . . 4 (𝜑 → 0 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
50 nfv 1914 . . . . . . . 8 𝑥𝜑
51 nfmpt1 5220 . . . . . . . . . 10 𝑥(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5251nfrn 5932 . . . . . . . . 9 𝑥ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5352nfcri 2890 . . . . . . . 8 𝑥 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
5450, 53nfan 1899 . . . . . . 7 𝑥(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
55 simpr 484 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
56 vex 3463 . . . . . . . . 9 𝑥 ∈ V
57 nfv 1914 . . . . . . . . . . . . 13 𝑦𝜑
58 nfcv 2898 . . . . . . . . . . . . . . . 16 𝑦{𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
59 nfcv 2898 . . . . . . . . . . . . . . . . 17 𝑦𝑥
6059nfesum1 34071 . . . . . . . . . . . . . . . 16 𝑦Σ*𝑦𝑥(𝑅𝑦)
6158, 60nfmpt 5219 . . . . . . . . . . . . . . 15 𝑦(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6261nfrn 5932 . . . . . . . . . . . . . 14 𝑦ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6362nfcri 2890 . . . . . . . . . . . . 13 𝑦 𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
6457, 63nfan 1899 . . . . . . . . . . . 12 𝑦(𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
65 nfv 1914 . . . . . . . . . . . 12 𝑦 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}
6664, 65nfan 1899 . . . . . . . . . . 11 𝑦((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
6760nfeq2 2916 . . . . . . . . . . 11 𝑦 𝑎 = Σ*𝑦𝑥(𝑅𝑦)
6866, 67nfan 1899 . . . . . . . . . 10 𝑦(((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦))
694ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
70 ssrab2 4055 . . . . . . . . . . . . . . . 16 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
71 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)})
7270, 71sselid 3956 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
736pweqd 4592 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 dom 𝑅 = 𝒫 𝑄)
7473ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝒫 dom 𝑅 = 𝒫 𝑄)
7572, 74eleqtrd 2836 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 𝑄)
7675elpwid 4584 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑥𝑄)
77 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑥)
7876, 77sseldd 3959 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → 𝑦𝑄)
7969, 78ffvelcdmd 7075 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
8079ex 412 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → (𝑦𝑥 → (𝑅𝑦) ∈ (0[,]+∞)))
8168, 80ralrimi 3240 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
8259esumcl 34061 . . . . . . . . 9 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8356, 81, 82sylancr 587 . . . . . . . 8 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
8455, 83eqeltrd 2834 . . . . . . 7 ((((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}) ∧ 𝑎 = Σ*𝑦𝑥(𝑅𝑦)) → 𝑎 ∈ (0[,]+∞))
85 vex 3463 . . . . . . . . . 10 𝑎 ∈ V
8646elrnmpt 5938 . . . . . . . . . 10 (𝑎 ∈ V → (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦)))
8785, 86ax-mp 5 . . . . . . . . 9 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8887biimpi 216 . . . . . . . 8 (𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
8988adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)}𝑎 = Σ*𝑦𝑥(𝑅𝑦))
9054, 84, 89r19.29af 3251 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ (0[,]+∞))
91 pnfxr 11289 . . . . . . 7 +∞ ∈ ℝ*
92 iccgelb 13419 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑎)
9345, 91, 92mp3an12 1453 . . . . . 6 (𝑎 ∈ (0[,]+∞) → 0 ≤ 𝑎)
9490, 93syl 17 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 0 ≤ 𝑎)
9511, 90sselid 3956 . . . . . 6 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → 𝑎 ∈ ℝ*)
96 xrlenlt 11300 . . . . . . 7 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (0 ≤ 𝑎 ↔ ¬ 𝑎 < 0))
9796bicomd 223 . . . . . 6 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9845, 95, 97sylancr 587 . . . . 5 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → (¬ 𝑎 < 0 ↔ 0 ≤ 𝑎))
9994, 98mpbird 257 . . . 4 ((𝜑𝑎 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))) → ¬ 𝑎 < 0)
10015, 17, 49, 99infmin 9508 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (∅ ⊆ 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) = 0)
10110, 100eqtrd 2770 . 2 (𝜑 → ((toOMeas‘𝑅)‘∅) = 0)
1022, 101eqtrid 2782 1 (𝜑 → (𝑀‘∅) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201   Or wor 5560  dom cdm 5654  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  infcinf 9453  0cc0 11129  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  [,]cicc 13365  Σ*cesum 34058  toOMeascoms 34323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-xadd 13129  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-tset 17290  df-ple 17291  df-ds 17293  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-ordt 17515  df-xrs 17516  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-fbas 21312  df-fg 21313  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-ntr 22958  df-nei 23036  df-cn 23165  df-haus 23253  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tsms 24065  df-esum 34059  df-oms 34324
This theorem is referenced by:  omsmeas  34355
  Copyright terms: Public domain W3C validator