| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwrd | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| nfwrd.1 | ⊢ Ⅎ𝑥𝑆 |
| Ref | Expression |
|---|---|
| nfwrd | ⊢ Ⅎ𝑥Word 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 14522 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 2 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑥ℕ0 | |
| 3 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 4 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥(0..^𝑙) | |
| 5 | nfwrd.1 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
| 6 | 3, 4, 5 | nff 6699 | . . . 4 ⊢ Ⅎ𝑥 𝑤:(0..^𝑙)⟶𝑆 |
| 7 | 2, 6 | nfrexw 3291 | . . 3 ⊢ Ⅎ𝑥∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 |
| 8 | 7 | nfab 2903 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| 9 | 1, 8 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥Word 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2712 Ⅎwnfc 2882 ∃wrex 3059 ⟶wf 6524 (class class class)co 7400 0cc0 11122 ℕ0cn0 12494 ..^cfzo 13661 Word cword 14521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-fun 6530 df-fn 6531 df-f 6532 df-word 14522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |