Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfwrd | Structured version Visualization version GIF version |
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
nfwrd.1 | ⊢ Ⅎ𝑥𝑆 |
Ref | Expression |
---|---|
nfwrd | ⊢ Ⅎ𝑥Word 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14146 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥ℕ0 | |
3 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
4 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥(0..^𝑙) | |
5 | nfwrd.1 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
6 | 3, 4, 5 | nff 6580 | . . . 4 ⊢ Ⅎ𝑥 𝑤:(0..^𝑙)⟶𝑆 |
7 | 2, 6 | nfrex 3237 | . . 3 ⊢ Ⅎ𝑥∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 |
8 | 7 | nfab 2912 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
9 | 1, 8 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥Word 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2715 Ⅎwnfc 2886 ∃wrex 3064 ⟶wf 6414 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 Word cword 14145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-word 14146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |