![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfwrd | Structured version Visualization version GIF version |
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
nfwrd.1 | ⊢ Ⅎ𝑥𝑆 |
Ref | Expression |
---|---|
nfwrd | ⊢ Ⅎ𝑥Word 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14550 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥ℕ0 | |
3 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
4 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥(0..^𝑙) | |
5 | nfwrd.1 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
6 | 3, 4, 5 | nff 6733 | . . . 4 ⊢ Ⅎ𝑥 𝑤:(0..^𝑙)⟶𝑆 |
7 | 2, 6 | nfrexw 3311 | . . 3 ⊢ Ⅎ𝑥∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 |
8 | 7 | nfab 2909 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
9 | 1, 8 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥Word 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2712 Ⅎwnfc 2888 ∃wrex 3068 ⟶wf 6559 (class class class)co 7431 0cc0 11153 ℕ0cn0 12524 ..^cfzo 13691 Word cword 14549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-word 14550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |