MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrd Structured version   Visualization version   GIF version

Theorem nfwrd 14489
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1 𝑥𝑆
Assertion
Ref Expression
nfwrd 𝑥Word 𝑆

Proof of Theorem nfwrd
Dummy variables 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 14461 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 nfcv 2904 . . . 4 𝑥0
3 nfcv 2904 . . . . 5 𝑥𝑤
4 nfcv 2904 . . . . 5 𝑥(0..^𝑙)
5 nfwrd.1 . . . . 5 𝑥𝑆
63, 4, 5nff 6710 . . . 4 𝑥 𝑤:(0..^𝑙)⟶𝑆
72, 6nfrexw 3311 . . 3 𝑥𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆
87nfab 2910 . 2 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
91, 8nfcxfr 2902 1 𝑥Word 𝑆
Colors of variables: wff setvar class
Syntax hints:  {cab 2710  wnfc 2884  wrex 3071  wf 6536  (class class class)co 7404  0cc0 11106  0cn0 12468  ..^cfzo 13623  Word cword 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6542  df-fn 6543  df-f 6544  df-word 14461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator