![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfwrd | Structured version Visualization version GIF version |
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
nfwrd.1 | ⊢ Ⅎ𝑥𝑆 |
Ref | Expression |
---|---|
nfwrd | ⊢ Ⅎ𝑥Word 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14563 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥ℕ0 | |
3 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
4 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥(0..^𝑙) | |
5 | nfwrd.1 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
6 | 3, 4, 5 | nff 6743 | . . . 4 ⊢ Ⅎ𝑥 𝑤:(0..^𝑙)⟶𝑆 |
7 | 2, 6 | nfrexw 3319 | . . 3 ⊢ Ⅎ𝑥∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 |
8 | 7 | nfab 2914 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
9 | 1, 8 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥Word 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2717 Ⅎwnfc 2893 ∃wrex 3076 ⟶wf 6569 (class class class)co 7448 0cc0 11184 ℕ0cn0 12553 ..^cfzo 13711 Word cword 14562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-word 14563 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |