MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrd Structured version   Visualization version   GIF version

Theorem nfwrd 14578
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1 𝑥𝑆
Assertion
Ref Expression
nfwrd 𝑥Word 𝑆

Proof of Theorem nfwrd
Dummy variables 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 14550 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 nfcv 2903 . . . 4 𝑥0
3 nfcv 2903 . . . . 5 𝑥𝑤
4 nfcv 2903 . . . . 5 𝑥(0..^𝑙)
5 nfwrd.1 . . . . 5 𝑥𝑆
63, 4, 5nff 6733 . . . 4 𝑥 𝑤:(0..^𝑙)⟶𝑆
72, 6nfrexw 3311 . . 3 𝑥𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆
87nfab 2909 . 2 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
91, 8nfcxfr 2901 1 𝑥Word 𝑆
Colors of variables: wff setvar class
Syntax hints:  {cab 2712  wnfc 2888  wrex 3068  wf 6559  (class class class)co 7431  0cc0 11153  0cn0 12524  ..^cfzo 13691  Word cword 14549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567  df-word 14550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator