MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrd Structured version   Visualization version   GIF version

Theorem nfwrd 14581
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1 𝑥𝑆
Assertion
Ref Expression
nfwrd 𝑥Word 𝑆

Proof of Theorem nfwrd
Dummy variables 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 14553 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 nfcv 2905 . . . 4 𝑥0
3 nfcv 2905 . . . . 5 𝑥𝑤
4 nfcv 2905 . . . . 5 𝑥(0..^𝑙)
5 nfwrd.1 . . . . 5 𝑥𝑆
63, 4, 5nff 6732 . . . 4 𝑥 𝑤:(0..^𝑙)⟶𝑆
72, 6nfrexw 3313 . . 3 𝑥𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆
87nfab 2911 . 2 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
91, 8nfcxfr 2903 1 𝑥Word 𝑆
Colors of variables: wff setvar class
Syntax hints:  {cab 2714  wnfc 2890  wrex 3070  wf 6557  (class class class)co 7431  0cc0 11155  0cn0 12526  ..^cfzo 13694  Word cword 14552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-fun 6563  df-fn 6564  df-f 6565  df-word 14553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator