MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrd Structured version   Visualization version   GIF version

Theorem nfwrd 14591
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1 𝑥𝑆
Assertion
Ref Expression
nfwrd 𝑥Word 𝑆

Proof of Theorem nfwrd
Dummy variables 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 14563 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 nfcv 2908 . . . 4 𝑥0
3 nfcv 2908 . . . . 5 𝑥𝑤
4 nfcv 2908 . . . . 5 𝑥(0..^𝑙)
5 nfwrd.1 . . . . 5 𝑥𝑆
63, 4, 5nff 6743 . . . 4 𝑥 𝑤:(0..^𝑙)⟶𝑆
72, 6nfrexw 3319 . . 3 𝑥𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆
87nfab 2914 . 2 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
91, 8nfcxfr 2906 1 𝑥Word 𝑆
Colors of variables: wff setvar class
Syntax hints:  {cab 2717  wnfc 2893  wrex 3076  wf 6569  (class class class)co 7448  0cc0 11184  0cn0 12553  ..^cfzo 13711  Word cword 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-word 14563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator