| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwrd | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| nfwrd.1 | ⊢ Ⅎ𝑥𝑆 |
| Ref | Expression |
|---|---|
| nfwrd | ⊢ Ⅎ𝑥Word 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 14486 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥ℕ0 | |
| 3 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 4 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥(0..^𝑙) | |
| 5 | nfwrd.1 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
| 6 | 3, 4, 5 | nff 6687 | . . . 4 ⊢ Ⅎ𝑥 𝑤:(0..^𝑙)⟶𝑆 |
| 7 | 2, 6 | nfrexw 3289 | . . 3 ⊢ Ⅎ𝑥∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 |
| 8 | 7 | nfab 2898 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| 9 | 1, 8 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥Word 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2708 Ⅎwnfc 2877 ∃wrex 3054 ⟶wf 6510 (class class class)co 7390 0cc0 11075 ℕ0cn0 12449 ..^cfzo 13622 Word cword 14485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-word 14486 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |