| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nff.1 | ⊢ Ⅎ𝑥𝐹 |
| nff.2 | ⊢ Ⅎ𝑥𝐴 |
| nff.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6518 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffn 6620 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| 5 | 2 | nfrn 5919 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
| 6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfss 3942 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
| 8 | 4, 7 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 1, 8 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2877 ⊆ wss 3917 ran crn 5642 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: nff1 6757 dffo3f 7081 nfwrd 14515 lfgrnloop 29059 fcomptf 32589 aciunf1lem 32593 fnpreimac 32602 esumfzf 34066 esumfsup 34067 poimirlem24 37645 sdclem1 37744 nfrelp 44946 fmuldfeqlem1 45587 fnlimfvre 45679 dvnmul 45948 stoweidlem53 46058 stoweidlem54 46059 stoweidlem57 46062 sge0iunmpt 46423 |
| Copyright terms: Public domain | W3C validator |