MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   GIF version

Theorem nff 6596
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 6437 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 6532 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5861 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 3913 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1902 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1855 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 396  wnf 1786  wnfc 2887  wss 3887  ran crn 5590   Fn wfn 6428  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  nff1  6668  nfwrd  14246  lfgrnloop  27495  fcomptf  30995  aciunf1lem  30999  fnpreimac  31008  esumfzf  32037  esumfsup  32038  poimirlem24  35801  sdclem1  35901  dffo3f  42717  fmuldfeqlem1  43123  fnlimfvre  43215  dvnmul  43484  stoweidlem53  43594  stoweidlem54  43595  stoweidlem57  43598  sge0iunmpt  43956
  Copyright terms: Public domain W3C validator