MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   GIF version

Theorem nff 6713
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 6547 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 6648 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5951 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 3974 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1902 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1855 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 396  wnf 1785  wnfc 2883  wss 3948  ran crn 5677   Fn wfn 6538  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by:  nff1  6785  dffo3f  7107  nfwrd  14495  lfgrnloop  28423  fcomptf  31921  aciunf1lem  31925  fnpreimac  31934  esumfzf  33136  esumfsup  33137  poimirlem24  36604  sdclem1  36703  fmuldfeqlem1  44383  fnlimfvre  44475  dvnmul  44744  stoweidlem53  44854  stoweidlem54  44855  stoweidlem57  44858  sge0iunmpt  45219
  Copyright terms: Public domain W3C validator