![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nff.1 | ⊢ Ⅎ𝑥𝐹 |
nff.2 | ⊢ Ⅎ𝑥𝐴 |
nff.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6577 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6678 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5977 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfss 4001 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
8 | 4, 7 | nfan 1898 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 1, 8 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1781 Ⅎwnfc 2893 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: nff1 6815 dffo3f 7140 nfwrd 14591 lfgrnloop 29160 fcomptf 32676 aciunf1lem 32680 fnpreimac 32689 esumfzf 34033 esumfsup 34034 poimirlem24 37604 sdclem1 37703 fmuldfeqlem1 45503 fnlimfvre 45595 dvnmul 45864 stoweidlem53 45974 stoweidlem54 45975 stoweidlem57 45978 sge0iunmpt 46339 |
Copyright terms: Public domain | W3C validator |