MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   GIF version

Theorem nff 6647
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 6485 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 6580 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5891 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 3922 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1900 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1854 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1784  wnfc 2879  wss 3897  ran crn 5615   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  nff1  6717  dffo3f  7039  nfwrd  14450  lfgrnloop  29103  fcomptf  32640  aciunf1lem  32644  fnpreimac  32653  esumfzf  34082  esumfsup  34083  poimirlem24  37694  sdclem1  37793  nfrelp  45052  fmuldfeqlem1  45692  fnlimfvre  45782  dvnmul  46051  stoweidlem53  46161  stoweidlem54  46162  stoweidlem57  46165  sge0iunmpt  46526
  Copyright terms: Public domain W3C validator