| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nff.1 | ⊢ Ⅎ𝑥𝐹 |
| nff.2 | ⊢ Ⅎ𝑥𝐴 |
| nff.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6503 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffn 6599 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| 5 | 2 | nfrn 5905 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
| 6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfss 3936 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
| 8 | 4, 7 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 1, 8 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2876 ⊆ wss 3911 ran crn 5632 Fn wfn 6494 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: nff1 6736 dffo3f 7060 nfwrd 14484 lfgrnloop 29028 fcomptf 32555 aciunf1lem 32559 fnpreimac 32568 esumfzf 34032 esumfsup 34033 poimirlem24 37611 sdclem1 37710 nfrelp 44912 fmuldfeqlem1 45553 fnlimfvre 45645 dvnmul 45914 stoweidlem53 46024 stoweidlem54 46025 stoweidlem57 46028 sge0iunmpt 46389 |
| Copyright terms: Public domain | W3C validator |