MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   GIF version

Theorem nff 6743
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 6577 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 6678 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5977 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 4001 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1898 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1851 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1781  wnfc 2893  wss 3976  ran crn 5701   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  nff1  6815  dffo3f  7140  nfwrd  14591  lfgrnloop  29160  fcomptf  32676  aciunf1lem  32680  fnpreimac  32689  esumfzf  34033  esumfsup  34034  poimirlem24  37604  sdclem1  37703  fmuldfeqlem1  45503  fnlimfvre  45595  dvnmul  45864  stoweidlem53  45974  stoweidlem54  45975  stoweidlem57  45978  sge0iunmpt  46339
  Copyright terms: Public domain W3C validator