Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nff.1 | ⊢ Ⅎ𝑥𝐹 |
nff.2 | ⊢ Ⅎ𝑥𝐴 |
nff.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6422 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6516 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5850 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfss 3909 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
8 | 4, 7 | nfan 1903 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 1, 8 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1787 Ⅎwnfc 2886 ⊆ wss 3883 ran crn 5581 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: nff1 6652 nfwrd 14174 lfgrnloop 27398 fcomptf 30897 aciunf1lem 30901 fnpreimac 30910 esumfzf 31937 esumfsup 31938 poimirlem24 35728 sdclem1 35828 dffo3f 42606 fmuldfeqlem1 43013 fnlimfvre 43105 dvnmul 43374 stoweidlem53 43484 stoweidlem54 43485 stoweidlem57 43488 sge0iunmpt 43846 |
Copyright terms: Public domain | W3C validator |