MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   GIF version

Theorem nff 6687
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 6518 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 6620 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5919 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 3942 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1899 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1853 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1783  wnfc 2877  wss 3917  ran crn 5642   Fn wfn 6509  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  nff1  6757  dffo3f  7081  nfwrd  14515  lfgrnloop  29059  fcomptf  32589  aciunf1lem  32593  fnpreimac  32602  esumfzf  34066  esumfsup  34067  poimirlem24  37645  sdclem1  37744  nfrelp  44946  fmuldfeqlem1  45587  fnlimfvre  45679  dvnmul  45948  stoweidlem53  46058  stoweidlem54  46059  stoweidlem57  46062  sge0iunmpt  46423
  Copyright terms: Public domain W3C validator