Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nff.1 | ⊢ Ⅎ𝑥𝐹 |
nff.2 | ⊢ Ⅎ𝑥𝐴 |
nff.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6437 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6532 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5861 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfss 3913 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
8 | 4, 7 | nfan 1902 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 1, 8 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 Ⅎwnf 1786 Ⅎwnfc 2887 ⊆ wss 3887 ran crn 5590 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: nff1 6668 nfwrd 14246 lfgrnloop 27495 fcomptf 30995 aciunf1lem 30999 fnpreimac 31008 esumfzf 32037 esumfsup 32038 poimirlem24 35801 sdclem1 35901 dffo3f 42717 fmuldfeqlem1 43123 fnlimfvre 43215 dvnmul 43484 stoweidlem53 43594 stoweidlem54 43595 stoweidlem57 43598 sge0iunmpt 43956 |
Copyright terms: Public domain | W3C validator |