| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nff.1 | ⊢ Ⅎ𝑥𝐹 |
| nff.2 | ⊢ Ⅎ𝑥𝐴 |
| nff.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6535 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffn 6637 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| 5 | 2 | nfrn 5932 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
| 6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfss 3951 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
| 8 | 4, 7 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 1, 8 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2883 ⊆ wss 3926 ran crn 5655 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: nff1 6772 dffo3f 7096 nfwrd 14561 lfgrnloop 29104 fcomptf 32636 aciunf1lem 32640 fnpreimac 32649 esumfzf 34100 esumfsup 34101 poimirlem24 37668 sdclem1 37767 nfrelp 44974 fmuldfeqlem1 45611 fnlimfvre 45703 dvnmul 45972 stoweidlem53 46082 stoweidlem54 46083 stoweidlem57 46086 sge0iunmpt 46447 |
| Copyright terms: Public domain | W3C validator |