MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   GIF version

Theorem nff 6580
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 6422 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 6516 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5850 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 3909 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1903 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1856 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1787  wnfc 2886  wss 3883  ran crn 5581   Fn wfn 6413  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  nff1  6652  nfwrd  14174  lfgrnloop  27398  fcomptf  30897  aciunf1lem  30901  fnpreimac  30910  esumfzf  31937  esumfsup  31938  poimirlem24  35728  sdclem1  35828  dffo3f  42606  fmuldfeqlem1  43013  fnlimfvre  43105  dvnmul  43374  stoweidlem53  43484  stoweidlem54  43485  stoweidlem57  43488  sge0iunmpt  43846
  Copyright terms: Public domain W3C validator