| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nff.1 | ⊢ Ⅎ𝑥𝐹 |
| nff.2 | ⊢ Ⅎ𝑥𝐴 |
| nff.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6485 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffn 6580 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| 5 | 2 | nfrn 5891 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
| 6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfss 3922 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
| 8 | 4, 7 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 1, 8 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1784 Ⅎwnfc 2879 ⊆ wss 3897 ran crn 5615 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: nff1 6717 dffo3f 7039 nfwrd 14450 lfgrnloop 29103 fcomptf 32640 aciunf1lem 32644 fnpreimac 32653 esumfzf 34082 esumfsup 34083 poimirlem24 37694 sdclem1 37793 nfrelp 45052 fmuldfeqlem1 45692 fnlimfvre 45782 dvnmul 46051 stoweidlem53 46161 stoweidlem54 46162 stoweidlem57 46165 sge0iunmpt 46526 |
| Copyright terms: Public domain | W3C validator |