MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   GIF version

Theorem nff 6702
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 6535 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 6637 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5932 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 3951 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1899 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1853 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1783  wnfc 2883  wss 3926  ran crn 5655   Fn wfn 6526  wf 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535
This theorem is referenced by:  nff1  6772  dffo3f  7096  nfwrd  14561  lfgrnloop  29104  fcomptf  32636  aciunf1lem  32640  fnpreimac  32649  esumfzf  34100  esumfsup  34101  poimirlem24  37668  sdclem1  37767  nfrelp  44974  fmuldfeqlem1  45611  fnlimfvre  45703  dvnmul  45972  stoweidlem53  46082  stoweidlem54  46083  stoweidlem57  46086  sge0iunmpt  46447
  Copyright terms: Public domain W3C validator