MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmr0reg Structured version   Visualization version   GIF version

Theorem nrmr0reg 23778
Description: A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmr0reg ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)

Proof of Theorem nrmr0reg
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 23365 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Top)
3 simpll 766 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Nrm)
4 simprl 770 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
52adantr 480 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
6 toptopon2 22945 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
75, 6sylib 218 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘ 𝐽))
8 simplr 768 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (KQ‘𝐽) ∈ Fre)
9 simprr 772 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
10 elunii 4936 . . . . . . 7 ((𝑦𝑥𝑥𝐽) → 𝑦 𝐽)
119, 4, 10syl2anc 583 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 𝐽)
12 eqid 2740 . . . . . . 7 (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤}) = (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤})
1312r0cld 23767 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝑦 𝐽) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
147, 8, 11, 13syl3anc 1371 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
15 simp1rr 1239 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑦𝑥)
164adantr 480 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → 𝑥𝐽)
17 elequ2 2123 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑎𝑏𝑎𝑥))
18 elequ2 2123 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
1917, 18bibi12d 345 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑎𝑏𝑦𝑏) ↔ (𝑎𝑥𝑦𝑥)))
2019rspcv 3631 . . . . . . . . 9 (𝑥𝐽 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
2116, 20syl 17 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
22213impia 1117 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → (𝑎𝑥𝑦𝑥))
2315, 22mpbird 257 . . . . . 6 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑎𝑥)
2423rabssdv 4098 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)
25 nrmsep3 23384 . . . . 5 ((𝐽 ∈ Nrm ∧ (𝑥𝐽 ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽) ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
263, 4, 14, 24, 25syl13anc 1372 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
27 elequ1 2115 . . . . . . . . . 10 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
2827bibi1d 343 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑎𝑏𝑦𝑏) ↔ (𝑦𝑏𝑦𝑏)))
2928ralbidv 3184 . . . . . . . 8 (𝑎 = 𝑦 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) ↔ ∀𝑏𝐽 (𝑦𝑏𝑦𝑏)))
30 biidd 262 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (𝑦𝑏𝑦𝑏))
3130ralrimivw 3156 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑏𝐽 (𝑦𝑏𝑦𝑏))
3229, 11, 31elrabd 3710 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)})
33 ssel 4002 . . . . . . 7 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 → (𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} → 𝑦𝑧))
3432, 33syl5com 31 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧𝑦𝑧))
3534anim1d 610 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3635reximdv 3176 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3726, 36mpd 15 . . 3 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
3837ralrimivva 3208 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
39 isreg 23361 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
402, 38, 39sylanbrc 582 1 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976   cuni 4931  cmpt 5249  cfv 6573  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  clsccl 23047  Frect1 23336  Regcreg 23338  Nrmcnrm 23339  KQckq 23722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-qtop 17567  df-top 22921  df-topon 22938  df-cld 23048  df-cn 23256  df-t1 23343  df-reg 23345  df-nrm 23346  df-kq 23723
This theorem is referenced by:  nrmreg  23853
  Copyright terms: Public domain W3C validator