MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmr0reg Structured version   Visualization version   GIF version

Theorem nrmr0reg 23692
Description: A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmr0reg ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)

Proof of Theorem nrmr0reg
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 23279 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Top)
3 simpll 766 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Nrm)
4 simprl 770 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
52adantr 480 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
6 toptopon2 22861 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
75, 6sylib 218 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘ 𝐽))
8 simplr 768 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (KQ‘𝐽) ∈ Fre)
9 simprr 772 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
10 elunii 4893 . . . . . . 7 ((𝑦𝑥𝑥𝐽) → 𝑦 𝐽)
119, 4, 10syl2anc 584 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 𝐽)
12 eqid 2736 . . . . . . 7 (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤}) = (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤})
1312r0cld 23681 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝑦 𝐽) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
147, 8, 11, 13syl3anc 1373 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
15 simp1rr 1240 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑦𝑥)
164adantr 480 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → 𝑥𝐽)
17 elequ2 2124 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑎𝑏𝑎𝑥))
18 elequ2 2124 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
1917, 18bibi12d 345 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑎𝑏𝑦𝑏) ↔ (𝑎𝑥𝑦𝑥)))
2019rspcv 3602 . . . . . . . . 9 (𝑥𝐽 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
2116, 20syl 17 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
22213impia 1117 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → (𝑎𝑥𝑦𝑥))
2315, 22mpbird 257 . . . . . 6 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑎𝑥)
2423rabssdv 4055 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)
25 nrmsep3 23298 . . . . 5 ((𝐽 ∈ Nrm ∧ (𝑥𝐽 ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽) ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
263, 4, 14, 24, 25syl13anc 1374 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
27 elequ1 2116 . . . . . . . . . 10 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
2827bibi1d 343 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑎𝑏𝑦𝑏) ↔ (𝑦𝑏𝑦𝑏)))
2928ralbidv 3164 . . . . . . . 8 (𝑎 = 𝑦 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) ↔ ∀𝑏𝐽 (𝑦𝑏𝑦𝑏)))
30 biidd 262 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (𝑦𝑏𝑦𝑏))
3130ralrimivw 3137 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑏𝐽 (𝑦𝑏𝑦𝑏))
3229, 11, 31elrabd 3678 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)})
33 ssel 3957 . . . . . . 7 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 → (𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} → 𝑦𝑧))
3432, 33syl5com 31 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧𝑦𝑧))
3534anim1d 611 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3635reximdv 3156 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3726, 36mpd 15 . . 3 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
3837ralrimivva 3188 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
39 isreg 23275 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
402, 38, 39sylanbrc 583 1 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3052  wrex 3061  {crab 3420  wss 3931   cuni 4888  cmpt 5206  cfv 6536  Topctop 22836  TopOnctopon 22853  Clsdccld 22959  clsccl 22961  Frect1 23250  Regcreg 23252  Nrmcnrm 23253  KQckq 23636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-qtop 17526  df-top 22837  df-topon 22854  df-cld 22962  df-cn 23170  df-t1 23257  df-reg 23259  df-nrm 23260  df-kq 23637
This theorem is referenced by:  nrmreg  23767
  Copyright terms: Public domain W3C validator