MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmr0reg Structured version   Visualization version   GIF version

Theorem nrmr0reg 23260
Description: A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmr0reg ((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) β†’ 𝐽 ∈ Reg)

Proof of Theorem nrmr0reg
Dummy variables π‘₯ 𝑦 π‘Ž 𝑏 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 22847 . . 3 (𝐽 ∈ Nrm β†’ 𝐽 ∈ Top)
21adantr 481 . 2 ((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) β†’ 𝐽 ∈ Top)
3 simpll 765 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝐽 ∈ Nrm)
4 simprl 769 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ π‘₯ ∈ 𝐽)
52adantr 481 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝐽 ∈ Top)
6 toptopon2 22427 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
75, 6sylib 217 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
8 simplr 767 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ (KQβ€˜π½) ∈ Fre)
9 simprr 771 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝑦 ∈ π‘₯)
10 elunii 4913 . . . . . . 7 ((𝑦 ∈ π‘₯ ∧ π‘₯ ∈ 𝐽) β†’ 𝑦 ∈ βˆͺ 𝐽)
119, 4, 10syl2anc 584 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝑦 ∈ βˆͺ 𝐽)
12 eqid 2732 . . . . . . 7 (𝑧 ∈ βˆͺ 𝐽 ↦ {𝑀 ∈ 𝐽 ∣ 𝑧 ∈ 𝑀}) = (𝑧 ∈ βˆͺ 𝐽 ↦ {𝑀 ∈ 𝐽 ∣ 𝑧 ∈ 𝑀})
1312r0cld 23249 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ (KQβ€˜π½) ∈ Fre ∧ 𝑦 ∈ βˆͺ 𝐽) β†’ {π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} ∈ (Clsdβ€˜π½))
147, 8, 11, 13syl3anc 1371 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ {π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} ∈ (Clsdβ€˜π½))
15 simp1rr 1239 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) ∧ π‘Ž ∈ βˆͺ 𝐽 ∧ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)) β†’ 𝑦 ∈ π‘₯)
164adantr 481 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) ∧ π‘Ž ∈ βˆͺ 𝐽) β†’ π‘₯ ∈ 𝐽)
17 elequ2 2121 . . . . . . . . . . 11 (𝑏 = π‘₯ β†’ (π‘Ž ∈ 𝑏 ↔ π‘Ž ∈ π‘₯))
18 elequ2 2121 . . . . . . . . . . 11 (𝑏 = π‘₯ β†’ (𝑦 ∈ 𝑏 ↔ 𝑦 ∈ π‘₯))
1917, 18bibi12d 345 . . . . . . . . . 10 (𝑏 = π‘₯ β†’ ((π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏) ↔ (π‘Ž ∈ π‘₯ ↔ 𝑦 ∈ π‘₯)))
2019rspcv 3608 . . . . . . . . 9 (π‘₯ ∈ 𝐽 β†’ (βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏) β†’ (π‘Ž ∈ π‘₯ ↔ 𝑦 ∈ π‘₯)))
2116, 20syl 17 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) ∧ π‘Ž ∈ βˆͺ 𝐽) β†’ (βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏) β†’ (π‘Ž ∈ π‘₯ ↔ 𝑦 ∈ π‘₯)))
22213impia 1117 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) ∧ π‘Ž ∈ βˆͺ 𝐽 ∧ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)) β†’ (π‘Ž ∈ π‘₯ ↔ 𝑦 ∈ π‘₯))
2315, 22mpbird 256 . . . . . 6 ((((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) ∧ π‘Ž ∈ βˆͺ 𝐽 ∧ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)) β†’ π‘Ž ∈ π‘₯)
2423rabssdv 4072 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ {π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† π‘₯)
25 nrmsep3 22866 . . . . 5 ((𝐽 ∈ Nrm ∧ (π‘₯ ∈ 𝐽 ∧ {π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} ∈ (Clsdβ€˜π½) ∧ {π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† π‘₯)) β†’ βˆƒπ‘§ ∈ 𝐽 ({π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯))
263, 4, 14, 24, 25syl13anc 1372 . . . 4 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ βˆƒπ‘§ ∈ 𝐽 ({π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯))
27 elequ1 2113 . . . . . . . . . 10 (π‘Ž = 𝑦 β†’ (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏))
2827bibi1d 343 . . . . . . . . 9 (π‘Ž = 𝑦 β†’ ((π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏) ↔ (𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)))
2928ralbidv 3177 . . . . . . . 8 (π‘Ž = 𝑦 β†’ (βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏) ↔ βˆ€π‘ ∈ 𝐽 (𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)))
30 biidd 261 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ (𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏))
3130ralrimivw 3150 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ βˆ€π‘ ∈ 𝐽 (𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏))
3229, 11, 31elrabd 3685 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝑦 ∈ {π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)})
33 ssel 3975 . . . . . . 7 ({π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† 𝑧 β†’ (𝑦 ∈ {π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} β†’ 𝑦 ∈ 𝑧))
3432, 33syl5com 31 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ ({π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† 𝑧 β†’ 𝑦 ∈ 𝑧))
3534anim1d 611 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ (({π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯) β†’ (𝑦 ∈ 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯)))
3635reximdv 3170 . . . 4 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ (βˆƒπ‘§ ∈ 𝐽 ({π‘Ž ∈ βˆͺ 𝐽 ∣ βˆ€π‘ ∈ 𝐽 (π‘Ž ∈ 𝑏 ↔ 𝑦 ∈ 𝑏)} βŠ† 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯)))
3726, 36mpd 15 . . 3 (((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯))
3837ralrimivva 3200 . 2 ((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) β†’ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯))
39 isreg 22843 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((clsβ€˜π½)β€˜π‘§) βŠ† π‘₯)))
402, 38, 39sylanbrc 583 1 ((𝐽 ∈ Nrm ∧ (KQβ€˜π½) ∈ Fre) β†’ 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βŠ† wss 3948  βˆͺ cuni 4908   ↦ cmpt 5231  β€˜cfv 6543  Topctop 22402  TopOnctopon 22419  Clsdccld 22527  clsccl 22529  Frect1 22818  Regcreg 22820  Nrmcnrm 22821  KQckq 23204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-qtop 17455  df-top 22403  df-topon 22420  df-cld 22530  df-cn 22738  df-t1 22825  df-reg 22827  df-nrm 22828  df-kq 23205
This theorem is referenced by:  nrmreg  23335
  Copyright terms: Public domain W3C validator