MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmr0reg Structured version   Visualization version   GIF version

Theorem nrmr0reg 23773
Description: A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmr0reg ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)

Proof of Theorem nrmr0reg
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 23360 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Top)
3 simpll 767 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Nrm)
4 simprl 771 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
52adantr 480 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
6 toptopon2 22940 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
75, 6sylib 218 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘ 𝐽))
8 simplr 769 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (KQ‘𝐽) ∈ Fre)
9 simprr 773 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
10 elunii 4917 . . . . . . 7 ((𝑦𝑥𝑥𝐽) → 𝑦 𝐽)
119, 4, 10syl2anc 584 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 𝐽)
12 eqid 2735 . . . . . . 7 (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤}) = (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤})
1312r0cld 23762 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝑦 𝐽) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
147, 8, 11, 13syl3anc 1370 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
15 simp1rr 1238 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑦𝑥)
164adantr 480 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → 𝑥𝐽)
17 elequ2 2121 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑎𝑏𝑎𝑥))
18 elequ2 2121 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
1917, 18bibi12d 345 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑎𝑏𝑦𝑏) ↔ (𝑎𝑥𝑦𝑥)))
2019rspcv 3618 . . . . . . . . 9 (𝑥𝐽 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
2116, 20syl 17 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
22213impia 1116 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → (𝑎𝑥𝑦𝑥))
2315, 22mpbird 257 . . . . . 6 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑎𝑥)
2423rabssdv 4085 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)
25 nrmsep3 23379 . . . . 5 ((𝐽 ∈ Nrm ∧ (𝑥𝐽 ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽) ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
263, 4, 14, 24, 25syl13anc 1371 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
27 elequ1 2113 . . . . . . . . . 10 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
2827bibi1d 343 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑎𝑏𝑦𝑏) ↔ (𝑦𝑏𝑦𝑏)))
2928ralbidv 3176 . . . . . . . 8 (𝑎 = 𝑦 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) ↔ ∀𝑏𝐽 (𝑦𝑏𝑦𝑏)))
30 biidd 262 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (𝑦𝑏𝑦𝑏))
3130ralrimivw 3148 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑏𝐽 (𝑦𝑏𝑦𝑏))
3229, 11, 31elrabd 3697 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)})
33 ssel 3989 . . . . . . 7 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 → (𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} → 𝑦𝑧))
3432, 33syl5com 31 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧𝑦𝑧))
3534anim1d 611 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3635reximdv 3168 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3726, 36mpd 15 . . 3 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
3837ralrimivva 3200 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
39 isreg 23356 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
402, 38, 39sylanbrc 583 1 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wral 3059  wrex 3068  {crab 3433  wss 3963   cuni 4912  cmpt 5231  cfv 6563  Topctop 22915  TopOnctopon 22932  Clsdccld 23040  clsccl 23042  Frect1 23331  Regcreg 23333  Nrmcnrm 23334  KQckq 23717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-qtop 17554  df-top 22916  df-topon 22933  df-cld 23043  df-cn 23251  df-t1 23338  df-reg 23340  df-nrm 23341  df-kq 23718
This theorem is referenced by:  nrmreg  23848
  Copyright terms: Public domain W3C validator