MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmr0reg Structured version   Visualization version   GIF version

Theorem nrmr0reg 22808
Description: A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmr0reg ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)

Proof of Theorem nrmr0reg
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 22395 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Top)
3 simpll 763 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Nrm)
4 simprl 767 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
52adantr 480 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
6 toptopon2 21975 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
75, 6sylib 217 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘ 𝐽))
8 simplr 765 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (KQ‘𝐽) ∈ Fre)
9 simprr 769 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
10 elunii 4841 . . . . . . 7 ((𝑦𝑥𝑥𝐽) → 𝑦 𝐽)
119, 4, 10syl2anc 583 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 𝐽)
12 eqid 2738 . . . . . . 7 (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤}) = (𝑧 𝐽 ↦ {𝑤𝐽𝑧𝑤})
1312r0cld 22797 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝑦 𝐽) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
147, 8, 11, 13syl3anc 1369 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽))
15 simp1rr 1237 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑦𝑥)
164adantr 480 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → 𝑥𝐽)
17 elequ2 2123 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑎𝑏𝑎𝑥))
18 elequ2 2123 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
1917, 18bibi12d 345 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑎𝑏𝑦𝑏) ↔ (𝑎𝑥𝑦𝑥)))
2019rspcv 3547 . . . . . . . . 9 (𝑥𝐽 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
2116, 20syl 17 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽) → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) → (𝑎𝑥𝑦𝑥)))
22213impia 1115 . . . . . . 7 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → (𝑎𝑥𝑦𝑥))
2315, 22mpbird 256 . . . . . 6 ((((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) ∧ 𝑎 𝐽 ∧ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)) → 𝑎𝑥)
2423rabssdv 4004 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)
25 nrmsep3 22414 . . . . 5 ((𝐽 ∈ Nrm ∧ (𝑥𝐽 ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ∈ (Clsd‘𝐽) ∧ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
263, 4, 14, 24, 25syl13anc 1370 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
27 elequ1 2115 . . . . . . . . . 10 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
2827bibi1d 343 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑎𝑏𝑦𝑏) ↔ (𝑦𝑏𝑦𝑏)))
2928ralbidv 3120 . . . . . . . 8 (𝑎 = 𝑦 → (∀𝑏𝐽 (𝑎𝑏𝑦𝑏) ↔ ∀𝑏𝐽 (𝑦𝑏𝑦𝑏)))
30 biidd 261 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (𝑦𝑏𝑦𝑏))
3130ralrimivw 3108 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑏𝐽 (𝑦𝑏𝑦𝑏))
3229, 11, 31elrabd 3619 . . . . . . 7 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)})
33 ssel 3910 . . . . . . 7 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 → (𝑦 ∈ {𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} → 𝑦𝑧))
3432, 33syl5com 31 . . . . . 6 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧𝑦𝑧))
3534anim1d 610 . . . . 5 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3635reximdv 3201 . . . 4 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → (∃𝑧𝐽 ({𝑎 𝐽 ∣ ∀𝑏𝐽 (𝑎𝑏𝑦𝑏)} ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
3726, 36mpd 15 . . 3 (((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
3837ralrimivva 3114 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
39 isreg 22391 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
402, 38, 39sylanbrc 582 1 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883   cuni 4836  cmpt 5153  cfv 6418  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  clsccl 22077  Frect1 22366  Regcreg 22368  Nrmcnrm 22369  KQckq 22752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-qtop 17135  df-top 21951  df-topon 21968  df-cld 22078  df-cn 22286  df-t1 22373  df-reg 22375  df-nrm 22376  df-kq 22753
This theorem is referenced by:  nrmreg  22883
  Copyright terms: Public domain W3C validator