Proof of Theorem nrmsep
Step | Hyp | Ref
| Expression |
1 | | nrmtop 21469 |
. . . . . 6
⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
2 | 1 | ad2antrr 718 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐽 ∈ Top) |
3 | | elssuni 4659 |
. . . . . 6
⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) |
4 | 3 | ad2antrl 720 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ∪ 𝐽) |
5 | | eqid 2799 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
6 | 5 | clscld 21180 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
7 | 2, 4, 6 | syl2anc 580 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
8 | 5 | cldopn 21164 |
. . . 4
⊢
(((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (∪ 𝐽
∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽) |
10 | | simprrl 800 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐶 ⊆ 𝑥) |
11 | | incom 4003 |
. . . . 5
⊢ (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = (((cls‘𝐽)‘𝑥) ∩ 𝐷) |
12 | | simprrr 801 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅) |
13 | 11, 12 | syl5eq 2845 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅) |
14 | | simplr2 1278 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ∈ (Clsd‘𝐽)) |
15 | 5 | cldss 21162 |
. . . . 5
⊢ (𝐷 ∈ (Clsd‘𝐽) → 𝐷 ⊆ ∪ 𝐽) |
16 | | reldisj 4215 |
. . . . 5
⊢ (𝐷 ⊆ ∪ 𝐽
→ ((𝐷 ∩
((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ (∪ 𝐽
∖ ((cls‘𝐽)‘𝑥)))) |
17 | 14, 15, 16 | 3syl 18 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
18 | 13, 17 | mpbid 224 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) |
19 | 5 | sscls 21189 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ 𝑥 ⊆
((cls‘𝐽)‘𝑥)) |
20 | 2, 4, 19 | syl2anc 580 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) |
21 | 20 | ssrind 4035 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
22 | | disjdif 4234 |
. . . 4
⊢
(((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅ |
23 | | sseq0 4171 |
. . . 4
⊢ (((𝑥 ∩ (∪ 𝐽
∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ∧ (((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) → (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) |
24 | 21, 22, 23 | sylancl 581 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) |
25 | | sseq2 3823 |
. . . . 5
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝐷 ⊆ 𝑦 ↔ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
26 | | ineq2 4006 |
. . . . . 6
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝑥 ∩ 𝑦) = (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
27 | 26 | eqeq1d 2801 |
. . . . 5
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) |
28 | 25, 27 | 3anbi23d 1564 |
. . . 4
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅))) |
29 | 28 | rspcev 3497 |
. . 3
⊢ (((∪ 𝐽
∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) → ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
30 | 9, 10, 18, 24, 29 | syl13anc 1492 |
. 2
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
31 | | nrmsep2 21489 |
. 2
⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
32 | 30, 31 | reximddv 3198 |
1
⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |