MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep Structured version   Visualization version   GIF version

Theorem nrmsep 22416
Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmsep ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐽,𝑦

Proof of Theorem nrmsep
StepHypRef Expression
1 nrmtop 22395 . . . . . 6 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21ad2antrr 722 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐽 ∈ Top)
3 elssuni 4868 . . . . . 6 (𝑥𝐽𝑥 𝐽)
43ad2antrl 724 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 𝐽)
5 eqid 2738 . . . . . 6 𝐽 = 𝐽
65clscld 22106 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
72, 4, 6syl2anc 583 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
85cldopn 22090 . . . 4 (((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
97, 8syl 17 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
10 simprrl 777 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐶𝑥)
11 incom 4131 . . . . 5 (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = (((cls‘𝐽)‘𝑥) ∩ 𝐷)
12 simprrr 778 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)
1311, 12eqtrid 2790 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅)
14 simplr2 1214 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ∈ (Clsd‘𝐽))
155cldss 22088 . . . . 5 (𝐷 ∈ (Clsd‘𝐽) → 𝐷 𝐽)
16 reldisj 4382 . . . . 5 (𝐷 𝐽 → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1714, 15, 163syl 18 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1813, 17mpbid 231 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)))
195sscls 22115 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
202, 4, 19syl2anc 583 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2120ssrind 4166 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
22 disjdif 4402 . . . 4 (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅
23 sseq0 4330 . . . 4 (((𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ∧ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
2421, 22, 23sylancl 585 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
25 sseq2 3943 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝐷𝑦𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
26 ineq2 4137 . . . . . 6 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝑥𝑦) = (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
2726eqeq1d 2740 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝑥𝑦) = ∅ ↔ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅))
2825, 273anbi23d 1437 . . . 4 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)))
2928rspcev 3552 . . 3 ((( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽 ∧ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
309, 10, 18, 24, 29syl13anc 1370 . 2 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
31 nrmsep2 22415 . 2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
3230, 31reximddv 3203 1 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cdif 3880  cin 3882  wss 3883  c0 4253   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075  clsccl 22077  Nrmcnrm 22369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-cls 22080  df-nrm 22376
This theorem is referenced by:  isnrm3  22418
  Copyright terms: Public domain W3C validator