Proof of Theorem nrmsep
| Step | Hyp | Ref
| Expression |
| 1 | | nrmtop 23344 |
. . . . . 6
⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
| 2 | 1 | ad2antrr 726 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐽 ∈ Top) |
| 3 | | elssuni 4937 |
. . . . . 6
⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) |
| 4 | 3 | ad2antrl 728 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ∪ 𝐽) |
| 5 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 6 | 5 | clscld 23055 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
| 7 | 2, 4, 6 | syl2anc 584 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
| 8 | 5 | cldopn 23039 |
. . . 4
⊢
(((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽) |
| 9 | 7, 8 | syl 17 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (∪ 𝐽
∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽) |
| 10 | | simprrl 781 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐶 ⊆ 𝑥) |
| 11 | | incom 4209 |
. . . . 5
⊢ (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = (((cls‘𝐽)‘𝑥) ∩ 𝐷) |
| 12 | | simprrr 782 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅) |
| 13 | 11, 12 | eqtrid 2789 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅) |
| 14 | | simplr2 1217 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ∈ (Clsd‘𝐽)) |
| 15 | 5 | cldss 23037 |
. . . . 5
⊢ (𝐷 ∈ (Clsd‘𝐽) → 𝐷 ⊆ ∪ 𝐽) |
| 16 | | reldisj 4453 |
. . . . 5
⊢ (𝐷 ⊆ ∪ 𝐽
→ ((𝐷 ∩
((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ (∪ 𝐽
∖ ((cls‘𝐽)‘𝑥)))) |
| 17 | 14, 15, 16 | 3syl 18 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
| 18 | 13, 17 | mpbid 232 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) |
| 19 | 5 | sscls 23064 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ 𝑥 ⊆
((cls‘𝐽)‘𝑥)) |
| 20 | 2, 4, 19 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) |
| 21 | 20 | ssrind 4244 |
. . . 4
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
| 22 | | disjdif 4472 |
. . . 4
⊢
(((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅ |
| 23 | | sseq0 4403 |
. . . 4
⊢ (((𝑥 ∩ (∪ 𝐽
∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ∧ (((cls‘𝐽)‘𝑥) ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) → (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) |
| 24 | 21, 22, 23 | sylancl 586 |
. . 3
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) |
| 25 | | sseq2 4010 |
. . . . 5
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝐷 ⊆ 𝑦 ↔ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
| 26 | | ineq2 4214 |
. . . . . 6
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝑥 ∩ 𝑦) = (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)))) |
| 27 | 26 | eqeq1d 2739 |
. . . . 5
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) |
| 28 | 25, 27 | 3anbi23d 1441 |
. . . 4
⊢ (𝑦 = (∪
𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅))) |
| 29 | 28 | rspcev 3622 |
. . 3
⊢ (((∪ 𝐽
∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) → ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 30 | 9, 10, 18, 24, 29 | syl13anc 1374 |
. 2
⊢ (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) ∧ (𝑥 ∈ 𝐽 ∧ (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 31 | | nrmsep2 23364 |
. 2
⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
| 32 | 30, 31 | reximddv 3171 |
1
⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |