MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep Structured version   Visualization version   GIF version

Theorem nrmsep 23386
Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmsep ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐽,𝑦

Proof of Theorem nrmsep
StepHypRef Expression
1 nrmtop 23365 . . . . . 6 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21ad2antrr 725 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐽 ∈ Top)
3 elssuni 4961 . . . . . 6 (𝑥𝐽𝑥 𝐽)
43ad2antrl 727 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 𝐽)
5 eqid 2740 . . . . . 6 𝐽 = 𝐽
65clscld 23076 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
72, 4, 6syl2anc 583 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
85cldopn 23060 . . . 4 (((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
97, 8syl 17 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
10 simprrl 780 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐶𝑥)
11 incom 4230 . . . . 5 (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = (((cls‘𝐽)‘𝑥) ∩ 𝐷)
12 simprrr 781 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)
1311, 12eqtrid 2792 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅)
14 simplr2 1216 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ∈ (Clsd‘𝐽))
155cldss 23058 . . . . 5 (𝐷 ∈ (Clsd‘𝐽) → 𝐷 𝐽)
16 reldisj 4476 . . . . 5 (𝐷 𝐽 → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1714, 15, 163syl 18 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1813, 17mpbid 232 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)))
195sscls 23085 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
202, 4, 19syl2anc 583 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2120ssrind 4265 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
22 disjdif 4495 . . . 4 (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅
23 sseq0 4426 . . . 4 (((𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ∧ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
2421, 22, 23sylancl 585 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
25 sseq2 4035 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝐷𝑦𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
26 ineq2 4235 . . . . . 6 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝑥𝑦) = (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
2726eqeq1d 2742 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝑥𝑦) = ∅ ↔ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅))
2825, 273anbi23d 1439 . . . 4 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)))
2928rspcev 3635 . . 3 ((( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽 ∧ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
309, 10, 18, 24, 29syl13anc 1372 . 2 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
31 nrmsep2 23385 . 2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
3230, 31reximddv 3177 1 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  cin 3975  wss 3976  c0 4352   cuni 4931  cfv 6573  Topctop 22920  Clsdccld 23045  clsccl 23047  Nrmcnrm 23339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-cls 23050  df-nrm 23346
This theorem is referenced by:  isnrm3  23388
  Copyright terms: Public domain W3C validator