MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep Structured version   Visualization version   GIF version

Theorem nrmsep 22660
Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmsep ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐽,𝑦

Proof of Theorem nrmsep
StepHypRef Expression
1 nrmtop 22639 . . . . . 6 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21ad2antrr 724 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐽 ∈ Top)
3 elssuni 4896 . . . . . 6 (𝑥𝐽𝑥 𝐽)
43ad2antrl 726 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 𝐽)
5 eqid 2737 . . . . . 6 𝐽 = 𝐽
65clscld 22350 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
72, 4, 6syl2anc 584 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
85cldopn 22334 . . . 4 (((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
97, 8syl 17 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
10 simprrl 779 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐶𝑥)
11 incom 4159 . . . . 5 (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = (((cls‘𝐽)‘𝑥) ∩ 𝐷)
12 simprrr 780 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)
1311, 12eqtrid 2789 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅)
14 simplr2 1216 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ∈ (Clsd‘𝐽))
155cldss 22332 . . . . 5 (𝐷 ∈ (Clsd‘𝐽) → 𝐷 𝐽)
16 reldisj 4409 . . . . 5 (𝐷 𝐽 → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1714, 15, 163syl 18 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1813, 17mpbid 231 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)))
195sscls 22359 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
202, 4, 19syl2anc 584 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2120ssrind 4193 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
22 disjdif 4429 . . . 4 (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅
23 sseq0 4357 . . . 4 (((𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ∧ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
2421, 22, 23sylancl 586 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
25 sseq2 3968 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝐷𝑦𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
26 ineq2 4164 . . . . . 6 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝑥𝑦) = (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
2726eqeq1d 2739 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝑥𝑦) = ∅ ↔ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅))
2825, 273anbi23d 1439 . . . 4 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)))
2928rspcev 3579 . . 3 ((( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽 ∧ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
309, 10, 18, 24, 29syl13anc 1372 . 2 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
31 nrmsep2 22659 . 2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
3230, 31reximddv 3166 1 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3071  cdif 3905  cin 3907  wss 3908  c0 4280   cuni 4863  cfv 6493  Topctop 22194  Clsdccld 22319  clsccl 22321  Nrmcnrm 22613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-top 22195  df-cld 22322  df-cls 22324  df-nrm 22620
This theorem is referenced by:  isnrm3  22662
  Copyright terms: Public domain W3C validator