Step | Hyp | Ref
| Expression |
1 | | hmph 22835 |
. 2
⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
2 | | n0 4277 |
. . 3
⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) |
3 | | hmeocn 22819 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
4 | 3 | adantl 481 |
. . . . . . 7
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
5 | | cntop2 22300 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top) |
7 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝐽 ∈ Nrm) |
8 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
9 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑥 ∈ 𝐾) |
10 | | cnima 22324 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
11 | 8, 9, 10 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
12 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)) |
13 | 12 | elin1d 4128 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ (Clsd‘𝐾)) |
14 | | cnclima 22327 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (◡𝑓 “ 𝑦) ∈ (Clsd‘𝐽)) |
15 | 8, 13, 14 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (◡𝑓 “ 𝑦) ∈ (Clsd‘𝐽)) |
16 | 12 | elin2d 4129 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ 𝒫 𝑥) |
17 | 16 | elpwid 4541 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ⊆ 𝑥) |
18 | | imass2 5999 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝑥 → (◡𝑓 “ 𝑦) ⊆ (◡𝑓 “ 𝑥)) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (◡𝑓 “ 𝑦) ⊆ (◡𝑓 “ 𝑥)) |
20 | | nrmsep3 22414 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Nrm ∧ ((◡𝑓 “ 𝑥) ∈ 𝐽 ∧ (◡𝑓 “ 𝑦) ∈ (Clsd‘𝐽) ∧ (◡𝑓 “ 𝑦) ⊆ (◡𝑓 “ 𝑥))) → ∃𝑤 ∈ 𝐽 ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
21 | 7, 11, 15, 19, 20 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑤 ∈ 𝐽 ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
22 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾)) |
23 | | simprl 767 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑤 ∈ 𝐽) |
24 | | hmeoima 22824 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 ∈ 𝐽) → (𝑓 “ 𝑤) ∈ 𝐾) |
25 | 22, 23, 24 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → (𝑓 “ 𝑤) ∈ 𝐾) |
26 | | simprrl 777 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → (◡𝑓 “ 𝑦) ⊆ 𝑤) |
27 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
28 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐾 =
∪ 𝐾 |
29 | 27, 28 | hmeof1o 22823 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
30 | 22, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
31 | | f1ofun 6702 |
. . . . . . . . . . . 12
⊢ (𝑓:∪
𝐽–1-1-onto→∪ 𝐾
→ Fun 𝑓) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → Fun 𝑓) |
33 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ∈ (Clsd‘𝐾)) |
34 | 28 | cldss 22088 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (Clsd‘𝐾) → 𝑦 ⊆ ∪ 𝐾) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ⊆ ∪ 𝐾) |
36 | | f1ofo 6707 |
. . . . . . . . . . . . 13
⊢ (𝑓:∪
𝐽–1-1-onto→∪ 𝐾
→ 𝑓:∪ 𝐽–onto→∪ 𝐾) |
37 | | forn 6675 |
. . . . . . . . . . . . 13
⊢ (𝑓:∪
𝐽–onto→∪ 𝐾 → ran 𝑓 = ∪ 𝐾) |
38 | 30, 36, 37 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ran 𝑓 = ∪ 𝐾) |
39 | 35, 38 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ⊆ ran 𝑓) |
40 | | funimass1 6500 |
. . . . . . . . . . 11
⊢ ((Fun
𝑓 ∧ 𝑦 ⊆ ran 𝑓) → ((◡𝑓 “ 𝑦) ⊆ 𝑤 → 𝑦 ⊆ (𝑓 “ 𝑤))) |
41 | 32, 39, 40 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((◡𝑓 “ 𝑦) ⊆ 𝑤 → 𝑦 ⊆ (𝑓 “ 𝑤))) |
42 | 26, 41 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ⊆ (𝑓 “ 𝑤)) |
43 | | elssuni 4868 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽) |
44 | 43 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑤 ⊆ ∪ 𝐽) |
45 | 27 | hmeocls 22827 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 ⊆ ∪ 𝐽) → ((cls‘𝐾)‘(𝑓 “ 𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤))) |
46 | 22, 44, 45 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐾)‘(𝑓 “ 𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤))) |
47 | | simprrr 778 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)) |
48 | | nrmtop 22395 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
49 | 48 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝐽 ∈ Top) |
50 | 27 | clsss3 22118 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑤 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑤) ⊆ ∪ 𝐽) |
51 | 49, 44, 50 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ ∪ 𝐽) |
52 | | f1odm 6704 |
. . . . . . . . . . . . . 14
⊢ (𝑓:∪
𝐽–1-1-onto→∪ 𝐾
→ dom 𝑓 = ∪ 𝐽) |
53 | 30, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → dom 𝑓 = ∪ 𝐽) |
54 | 51, 53 | sseqtrrd 3958 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) |
55 | | funimass3 6913 |
. . . . . . . . . . . 12
⊢ ((Fun
𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
56 | 32, 54, 55 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
57 | 47, 56 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥) |
58 | 46, 57 | eqsstrd 3955 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥) |
59 | | sseq2 3943 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑓 “ 𝑤) → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ (𝑓 “ 𝑤))) |
60 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑓 “ 𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓 “ 𝑤))) |
61 | 60 | sseq1d 3948 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑓 “ 𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥)) |
62 | 59, 61 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑓 “ 𝑤) → ((𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ⊆ (𝑓 “ 𝑤) ∧ ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥))) |
63 | 62 | rspcev 3552 |
. . . . . . . . 9
⊢ (((𝑓 “ 𝑤) ∈ 𝐾 ∧ (𝑦 ⊆ (𝑓 “ 𝑤) ∧ ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥)) → ∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
64 | 25, 42, 58, 63 | syl12anc 833 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
65 | 21, 64 | rexlimddv 3219 |
. . . . . . 7
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
66 | 65 | ralrimivva 3114 |
. . . . . 6
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
67 | | isnrm 22394 |
. . . . . 6
⊢ (𝐾 ∈ Nrm ↔ (𝐾 ∈ Top ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))) |
68 | 6, 66, 67 | sylanbrc 582 |
. . . . 5
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Nrm) |
69 | 68 | expcom 413 |
. . . 4
⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |
70 | 69 | exlimiv 1934 |
. . 3
⊢
(∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |
71 | 2, 70 | sylbi 216 |
. 2
⊢ ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |
72 | 1, 71 | sylbi 216 |
1
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |