MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmhmph Structured version   Visualization version   GIF version

Theorem nrmhmph 22945
Description: Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmhmph (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))

Proof of Theorem nrmhmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 22927 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4280 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 22911 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 482 . . . . . . 7 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 22392 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 764 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝐽 ∈ Nrm)
84adantr 481 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 768 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑥𝐾)
10 cnima 22416 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑥) ∈ 𝐽)
12 simprr 770 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))
1312elin1d 4132 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ (Clsd‘𝐾))
14 cnclima 22419 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (𝑓𝑦) ∈ (Clsd‘𝐽))
158, 13, 14syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ∈ (Clsd‘𝐽))
1612elin2d 4133 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ 𝒫 𝑥)
1716elpwid 4544 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦𝑥)
18 imass2 6010 . . . . . . . . . 10 (𝑦𝑥 → (𝑓𝑦) ⊆ (𝑓𝑥))
1917, 18syl 17 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ⊆ (𝑓𝑥))
20 nrmsep3 22506 . . . . . . . . 9 ((𝐽 ∈ Nrm ∧ ((𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (Clsd‘𝐽) ∧ (𝑓𝑦) ⊆ (𝑓𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
217, 11, 15, 19, 20syl13anc 1371 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
22 simpllr 773 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
23 simprl 768 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
24 hmeoima 22916 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2522, 23, 24syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
26 simprrl 778 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ⊆ 𝑤)
27 eqid 2738 . . . . . . . . . . . . . 14 𝐽 = 𝐽
28 eqid 2738 . . . . . . . . . . . . . 14 𝐾 = 𝐾
2927, 28hmeof1o 22915 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
3022, 29syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
31 f1ofun 6718 . . . . . . . . . . . 12 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
3230, 31syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
3313adantr 481 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (Clsd‘𝐾))
3428cldss 22180 . . . . . . . . . . . . 13 (𝑦 ∈ (Clsd‘𝐾) → 𝑦 𝐾)
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
36 f1ofo 6723 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
37 forn 6691 . . . . . . . . . . . . 13 (𝑓: 𝐽onto 𝐾 → ran 𝑓 = 𝐾)
3830, 36, 373syl 18 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ran 𝑓 = 𝐾)
3935, 38sseqtrrd 3962 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ ran 𝑓)
40 funimass1 6516 . . . . . . . . . . 11 ((Fun 𝑓𝑦 ⊆ ran 𝑓) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4132, 39, 40syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4226, 41mpd 15 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ (𝑓𝑤))
43 elssuni 4871 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4443ad2antrl 725 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4527hmeocls 22919 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4622, 44, 45syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
47 simprrr 779 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
48 nrmtop 22487 . . . . . . . . . . . . . . 15 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
4948ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5027clsss3 22210 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5149, 44, 50syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
52 f1odm 6720 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5330, 52syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5451, 53sseqtrrd 3962 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
55 funimass3 6931 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5632, 54, 55syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5747, 56mpbird 256 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
5846, 57eqsstrd 3959 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
59 sseq2 3947 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ⊆ (𝑓𝑤)))
60 fveq2 6774 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6160sseq1d 3952 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6259, 61anbi12d 631 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6362rspcev 3561 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6425, 42, 58, 63syl12anc 834 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6521, 64rexlimddv 3220 . . . . . . 7 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6665ralrimivva 3123 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
67 isnrm 22486 . . . . . 6 (𝐾 ∈ Nrm ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
686, 66, 67sylanbrc 583 . . . . 5 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Nrm)
6968expcom 414 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
7069exlimiv 1933 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
712, 70sylbi 216 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
721, 71sylbi 216 1 (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Fun wfun 6427  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Topctop 22042  Clsdccld 22167  clsccl 22169   Cn ccn 22375  Nrmcnrm 22461  Homeochmeo 22904  chmph 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-1o 8297  df-map 8617  df-top 22043  df-topon 22060  df-cld 22170  df-cls 22172  df-cn 22378  df-nrm 22468  df-hmeo 22906  df-hmph 22907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator