MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmhmph Structured version   Visualization version   GIF version

Theorem nrmhmph 22396
Description: Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmhmph (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))

Proof of Theorem nrmhmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 22378 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4309 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 22362 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 484 . . . . . . 7 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 21843 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 765 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝐽 ∈ Nrm)
84adantr 483 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 769 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑥𝐾)
10 cnima 21867 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 586 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑥) ∈ 𝐽)
12 simprr 771 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))
1312elin1d 4174 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ (Clsd‘𝐾))
14 cnclima 21870 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (𝑓𝑦) ∈ (Clsd‘𝐽))
158, 13, 14syl2anc 586 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ∈ (Clsd‘𝐽))
1612elin2d 4175 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ 𝒫 𝑥)
1716elpwid 4552 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦𝑥)
18 imass2 5959 . . . . . . . . . 10 (𝑦𝑥 → (𝑓𝑦) ⊆ (𝑓𝑥))
1917, 18syl 17 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ⊆ (𝑓𝑥))
20 nrmsep3 21957 . . . . . . . . 9 ((𝐽 ∈ Nrm ∧ ((𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (Clsd‘𝐽) ∧ (𝑓𝑦) ⊆ (𝑓𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
217, 11, 15, 19, 20syl13anc 1368 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
22 simpllr 774 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
23 simprl 769 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
24 hmeoima 22367 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2522, 23, 24syl2anc 586 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
26 simprrl 779 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ⊆ 𝑤)
27 eqid 2821 . . . . . . . . . . . . . 14 𝐽 = 𝐽
28 eqid 2821 . . . . . . . . . . . . . 14 𝐾 = 𝐾
2927, 28hmeof1o 22366 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
3022, 29syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
31 f1ofun 6611 . . . . . . . . . . . 12 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
3230, 31syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
3313adantr 483 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (Clsd‘𝐾))
3428cldss 21631 . . . . . . . . . . . . 13 (𝑦 ∈ (Clsd‘𝐾) → 𝑦 𝐾)
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
36 f1ofo 6616 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
37 forn 6587 . . . . . . . . . . . . 13 (𝑓: 𝐽onto 𝐾 → ran 𝑓 = 𝐾)
3830, 36, 373syl 18 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ran 𝑓 = 𝐾)
3935, 38sseqtrrd 4007 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ ran 𝑓)
40 funimass1 6430 . . . . . . . . . . 11 ((Fun 𝑓𝑦 ⊆ ran 𝑓) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4132, 39, 40syl2anc 586 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4226, 41mpd 15 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ (𝑓𝑤))
43 elssuni 4860 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4443ad2antrl 726 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4527hmeocls 22370 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4622, 44, 45syl2anc 586 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
47 simprrr 780 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
48 nrmtop 21938 . . . . . . . . . . . . . . 15 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
4948ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5027clsss3 21661 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5149, 44, 50syl2anc 586 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
52 f1odm 6613 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5330, 52syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5451, 53sseqtrrd 4007 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
55 funimass3 6818 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5632, 54, 55syl2anc 586 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5747, 56mpbird 259 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
5846, 57eqsstrd 4004 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
59 sseq2 3992 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ⊆ (𝑓𝑤)))
60 fveq2 6664 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6160sseq1d 3997 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6259, 61anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6362rspcev 3622 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6425, 42, 58, 63syl12anc 834 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6521, 64rexlimddv 3291 . . . . . . 7 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6665ralrimivva 3191 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
67 isnrm 21937 . . . . . 6 (𝐾 ∈ Nrm ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
686, 66, 67sylanbrc 585 . . . . 5 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Nrm)
6968expcom 416 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
7069exlimiv 1927 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
712, 70sylbi 219 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
721, 71sylbi 219 1 (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   cuni 4831   class class class wbr 5058  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  Fun wfun 6343  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Topctop 21495  Clsdccld 21618  clsccl 21620   Cn ccn 21826  Nrmcnrm 21912  Homeochmeo 22355  chmph 22356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-1o 8096  df-map 8402  df-top 21496  df-topon 21513  df-cld 21621  df-cls 21623  df-cn 21829  df-nrm 21919  df-hmeo 22357  df-hmph 22358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator