| Step | Hyp | Ref
| Expression |
| 1 | | hmph 23719 |
. 2
⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
| 2 | | n0 4333 |
. . 3
⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) |
| 3 | | hmeocn 23703 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
| 4 | 3 | adantl 481 |
. . . . . . 7
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
| 5 | | cntop2 23184 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top) |
| 7 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝐽 ∈ Nrm) |
| 8 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
| 9 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑥 ∈ 𝐾) |
| 10 | | cnima 23208 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
| 12 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)) |
| 13 | 12 | elin1d 4184 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ (Clsd‘𝐾)) |
| 14 | | cnclima 23211 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (◡𝑓 “ 𝑦) ∈ (Clsd‘𝐽)) |
| 15 | 8, 13, 14 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (◡𝑓 “ 𝑦) ∈ (Clsd‘𝐽)) |
| 16 | 12 | elin2d 4185 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ 𝒫 𝑥) |
| 17 | 16 | elpwid 4589 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ⊆ 𝑥) |
| 18 | | imass2 6094 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝑥 → (◡𝑓 “ 𝑦) ⊆ (◡𝑓 “ 𝑥)) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (◡𝑓 “ 𝑦) ⊆ (◡𝑓 “ 𝑥)) |
| 20 | | nrmsep3 23298 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Nrm ∧ ((◡𝑓 “ 𝑥) ∈ 𝐽 ∧ (◡𝑓 “ 𝑦) ∈ (Clsd‘𝐽) ∧ (◡𝑓 “ 𝑦) ⊆ (◡𝑓 “ 𝑥))) → ∃𝑤 ∈ 𝐽 ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
| 21 | 7, 11, 15, 19, 20 | syl13anc 1374 |
. . . . . . . 8
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑤 ∈ 𝐽 ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
| 22 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾)) |
| 23 | | simprl 770 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑤 ∈ 𝐽) |
| 24 | | hmeoima 23708 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 ∈ 𝐽) → (𝑓 “ 𝑤) ∈ 𝐾) |
| 25 | 22, 23, 24 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → (𝑓 “ 𝑤) ∈ 𝐾) |
| 26 | | simprrl 780 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → (◡𝑓 “ 𝑦) ⊆ 𝑤) |
| 27 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 28 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 29 | 27, 28 | hmeof1o 23707 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
| 30 | 22, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
| 31 | | f1ofun 6825 |
. . . . . . . . . . . 12
⊢ (𝑓:∪
𝐽–1-1-onto→∪ 𝐾
→ Fun 𝑓) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → Fun 𝑓) |
| 33 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ∈ (Clsd‘𝐾)) |
| 34 | 28 | cldss 22972 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (Clsd‘𝐾) → 𝑦 ⊆ ∪ 𝐾) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ⊆ ∪ 𝐾) |
| 36 | | f1ofo 6830 |
. . . . . . . . . . . . 13
⊢ (𝑓:∪
𝐽–1-1-onto→∪ 𝐾
→ 𝑓:∪ 𝐽–onto→∪ 𝐾) |
| 37 | | forn 6798 |
. . . . . . . . . . . . 13
⊢ (𝑓:∪
𝐽–onto→∪ 𝐾 → ran 𝑓 = ∪ 𝐾) |
| 38 | 30, 36, 37 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ran 𝑓 = ∪ 𝐾) |
| 39 | 35, 38 | sseqtrrd 4001 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ⊆ ran 𝑓) |
| 40 | | funimass1 6623 |
. . . . . . . . . . 11
⊢ ((Fun
𝑓 ∧ 𝑦 ⊆ ran 𝑓) → ((◡𝑓 “ 𝑦) ⊆ 𝑤 → 𝑦 ⊆ (𝑓 “ 𝑤))) |
| 41 | 32, 39, 40 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((◡𝑓 “ 𝑦) ⊆ 𝑤 → 𝑦 ⊆ (𝑓 “ 𝑤))) |
| 42 | 26, 41 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑦 ⊆ (𝑓 “ 𝑤)) |
| 43 | | elssuni 4918 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽) |
| 44 | 43 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝑤 ⊆ ∪ 𝐽) |
| 45 | 27 | hmeocls 23711 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 ⊆ ∪ 𝐽) → ((cls‘𝐾)‘(𝑓 “ 𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤))) |
| 46 | 22, 44, 45 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐾)‘(𝑓 “ 𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤))) |
| 47 | | simprrr 781 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)) |
| 48 | | nrmtop 23279 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
| 49 | 48 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → 𝐽 ∈ Top) |
| 50 | 27 | clsss3 23002 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑤 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑤) ⊆ ∪ 𝐽) |
| 51 | 49, 44, 50 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ ∪ 𝐽) |
| 52 | | f1odm 6827 |
. . . . . . . . . . . . . 14
⊢ (𝑓:∪
𝐽–1-1-onto→∪ 𝐾
→ dom 𝑓 = ∪ 𝐽) |
| 53 | 30, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → dom 𝑓 = ∪ 𝐽) |
| 54 | 51, 53 | sseqtrrd 4001 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) |
| 55 | | funimass3 7049 |
. . . . . . . . . . . 12
⊢ ((Fun
𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
| 56 | 32, 54, 55 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥))) |
| 57 | 47, 56 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥) |
| 58 | 46, 57 | eqsstrd 3998 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥) |
| 59 | | sseq2 3990 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑓 “ 𝑤) → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ (𝑓 “ 𝑤))) |
| 60 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑓 “ 𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓 “ 𝑤))) |
| 61 | 60 | sseq1d 3995 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑓 “ 𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥)) |
| 62 | 59, 61 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑓 “ 𝑤) → ((𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ⊆ (𝑓 “ 𝑤) ∧ ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥))) |
| 63 | 62 | rspcev 3606 |
. . . . . . . . 9
⊢ (((𝑓 “ 𝑤) ∈ 𝐾 ∧ (𝑦 ⊆ (𝑓 “ 𝑤) ∧ ((cls‘𝐾)‘(𝑓 “ 𝑤)) ⊆ 𝑥)) → ∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
| 64 | 25, 42, 58, 63 | syl12anc 836 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝑓 “ 𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (◡𝑓 “ 𝑥)))) → ∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
| 65 | 21, 64 | rexlimddv 3148 |
. . . . . . 7
⊢ (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
| 66 | 65 | ralrimivva 3188 |
. . . . . 6
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)) |
| 67 | | isnrm 23278 |
. . . . . 6
⊢ (𝐾 ∈ Nrm ↔ (𝐾 ∈ Top ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐾 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))) |
| 68 | 6, 66, 67 | sylanbrc 583 |
. . . . 5
⊢ ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Nrm) |
| 69 | 68 | expcom 413 |
. . . 4
⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |
| 70 | 69 | exlimiv 1930 |
. . 3
⊢
(∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |
| 71 | 2, 70 | sylbi 217 |
. 2
⊢ ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |
| 72 | 1, 71 | sylbi 217 |
1
⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) |