![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqnrm | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqnrm | ⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrmtop 23345 | . . . 4 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) | |
2 | toptopon2 22925 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
5 | 4 | kqnrmlem1 23752 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm) |
6 | 3, 5 | mpancom 688 | . 2 ⊢ (𝐽 ∈ Nrm → (KQ‘𝐽) ∈ Nrm) |
7 | nrmtop 23345 | . . . . 5 ⊢ ((KQ‘𝐽) ∈ Nrm → (KQ‘𝐽) ∈ Top) | |
8 | kqtop 23754 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
9 | 7, 8 | sylibr 234 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Top) |
10 | 9, 2 | sylib 218 | . . 3 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | 4 | kqnrmlem2 23753 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm) |
12 | 10, 11 | mpancom 688 | . 2 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Nrm) |
13 | 6, 12 | impbii 209 | 1 ⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2107 {crab 3435 ∪ cuni 4906 ↦ cmpt 5224 ‘cfv 6560 Topctop 22900 TopOnctopon 22917 Nrmcnrm 23319 KQckq 23702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-qtop 17553 df-top 22901 df-topon 22918 df-cld 23028 df-cls 23030 df-cn 23236 df-nrm 23326 df-kq 23703 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |