![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqnrm | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqnrm | β’ (π½ β Nrm β (KQβπ½) β Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrmtop 22831 | . . . 4 β’ (π½ β Nrm β π½ β Top) | |
2 | toptopon2 22411 | . . . 4 β’ (π½ β Top β π½ β (TopOnββͺ π½)) | |
3 | 1, 2 | sylib 217 | . . 3 β’ (π½ β Nrm β π½ β (TopOnββͺ π½)) |
4 | eqid 2732 | . . . 4 β’ (π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) = (π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) | |
5 | 4 | kqnrmlem1 23238 | . . 3 β’ ((π½ β (TopOnββͺ π½) β§ π½ β Nrm) β (KQβπ½) β Nrm) |
6 | 3, 5 | mpancom 686 | . 2 β’ (π½ β Nrm β (KQβπ½) β Nrm) |
7 | nrmtop 22831 | . . . . 5 β’ ((KQβπ½) β Nrm β (KQβπ½) β Top) | |
8 | kqtop 23240 | . . . . 5 β’ (π½ β Top β (KQβπ½) β Top) | |
9 | 7, 8 | sylibr 233 | . . . 4 β’ ((KQβπ½) β Nrm β π½ β Top) |
10 | 9, 2 | sylib 217 | . . 3 β’ ((KQβπ½) β Nrm β π½ β (TopOnββͺ π½)) |
11 | 4 | kqnrmlem2 23239 | . . 3 β’ ((π½ β (TopOnββͺ π½) β§ (KQβπ½) β Nrm) β π½ β Nrm) |
12 | 10, 11 | mpancom 686 | . 2 β’ ((KQβπ½) β Nrm β π½ β Nrm) |
13 | 6, 12 | impbii 208 | 1 β’ (π½ β Nrm β (KQβπ½) β Nrm) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β wcel 2106 {crab 3432 βͺ cuni 4907 β¦ cmpt 5230 βcfv 6540 Topctop 22386 TopOnctopon 22403 Nrmcnrm 22805 KQckq 23188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-qtop 17449 df-top 22387 df-topon 22404 df-cld 22514 df-cls 22516 df-cn 22722 df-nrm 22812 df-kq 23189 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |