Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqnrm | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqnrm | ⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrmtop 22468 | . . . 4 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) | |
2 | toptopon2 22048 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | eqid 2739 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
5 | 4 | kqnrmlem1 22875 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm) |
6 | 3, 5 | mpancom 684 | . 2 ⊢ (𝐽 ∈ Nrm → (KQ‘𝐽) ∈ Nrm) |
7 | nrmtop 22468 | . . . . 5 ⊢ ((KQ‘𝐽) ∈ Nrm → (KQ‘𝐽) ∈ Top) | |
8 | kqtop 22877 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
9 | 7, 8 | sylibr 233 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Top) |
10 | 9, 2 | sylib 217 | . . 3 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | 4 | kqnrmlem2 22876 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm) |
12 | 10, 11 | mpancom 684 | . 2 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Nrm) |
13 | 6, 12 | impbii 208 | 1 ⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2109 {crab 3069 ∪ cuni 4844 ↦ cmpt 5161 ‘cfv 6430 Topctop 22023 TopOnctopon 22040 Nrmcnrm 22442 KQckq 22825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-qtop 17199 df-top 22024 df-topon 22041 df-cld 22151 df-cls 22153 df-cn 22359 df-nrm 22449 df-kq 22826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |