MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrm Structured version   Visualization version   GIF version

Theorem kqnrm 23247
Description: The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqnrm (𝐽 ∈ Nrm ↔ (KQβ€˜π½) ∈ Nrm)

Proof of Theorem kqnrm
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 22831 . . . 4 (𝐽 ∈ Nrm β†’ 𝐽 ∈ Top)
2 toptopon2 22411 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
31, 2sylib 217 . . 3 (𝐽 ∈ Nrm β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
4 eqid 2732 . . . 4 (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦}) = (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
54kqnrmlem1 23238 . . 3 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ 𝐽 ∈ Nrm) β†’ (KQβ€˜π½) ∈ Nrm)
63, 5mpancom 686 . 2 (𝐽 ∈ Nrm β†’ (KQβ€˜π½) ∈ Nrm)
7 nrmtop 22831 . . . . 5 ((KQβ€˜π½) ∈ Nrm β†’ (KQβ€˜π½) ∈ Top)
8 kqtop 23240 . . . . 5 (𝐽 ∈ Top ↔ (KQβ€˜π½) ∈ Top)
97, 8sylibr 233 . . . 4 ((KQβ€˜π½) ∈ Nrm β†’ 𝐽 ∈ Top)
109, 2sylib 217 . . 3 ((KQβ€˜π½) ∈ Nrm β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
114kqnrmlem2 23239 . . 3 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ (KQβ€˜π½) ∈ Nrm) β†’ 𝐽 ∈ Nrm)
1210, 11mpancom 686 . 2 ((KQβ€˜π½) ∈ Nrm β†’ 𝐽 ∈ Nrm)
136, 12impbii 208 1 (𝐽 ∈ Nrm ↔ (KQβ€˜π½) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∈ wcel 2106  {crab 3432  βˆͺ cuni 4907   ↦ cmpt 5230  β€˜cfv 6540  Topctop 22386  TopOnctopon 22403  Nrmcnrm 22805  KQckq 23188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-qtop 17449  df-top 22387  df-topon 22404  df-cld 22514  df-cls 22516  df-cn 22722  df-nrm 22812  df-kq 23189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator