MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrm Structured version   Visualization version   GIF version

Theorem kqnrm 22913
Description: The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqnrm (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm)

Proof of Theorem kqnrm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 22497 . . . 4 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 toptopon2 22077 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 217 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2738 . . . 4 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54kqnrmlem1 22904 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm)
63, 5mpancom 685 . 2 (𝐽 ∈ Nrm → (KQ‘𝐽) ∈ Nrm)
7 nrmtop 22497 . . . . 5 ((KQ‘𝐽) ∈ Nrm → (KQ‘𝐽) ∈ Top)
8 kqtop 22906 . . . . 5 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
97, 8sylibr 233 . . . 4 ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Top)
109, 2sylib 217 . . 3 ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ (TopOn‘ 𝐽))
114kqnrmlem2 22905 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
1210, 11mpancom 685 . 2 ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Nrm)
136, 12impbii 208 1 (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  {crab 3068   cuni 4839  cmpt 5156  cfv 6426  Topctop 22052  TopOnctopon 22069  Nrmcnrm 22471  KQckq 22854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-map 8604  df-qtop 17228  df-top 22053  df-topon 22070  df-cld 22180  df-cls 22182  df-cn 22388  df-nrm 22478  df-kq 22855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator