Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqnrm | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqnrm | ⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrmtop 22497 | . . . 4 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) | |
2 | toptopon2 22077 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
5 | 4 | kqnrmlem1 22904 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm) |
6 | 3, 5 | mpancom 685 | . 2 ⊢ (𝐽 ∈ Nrm → (KQ‘𝐽) ∈ Nrm) |
7 | nrmtop 22497 | . . . . 5 ⊢ ((KQ‘𝐽) ∈ Nrm → (KQ‘𝐽) ∈ Top) | |
8 | kqtop 22906 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
9 | 7, 8 | sylibr 233 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Top) |
10 | 9, 2 | sylib 217 | . . 3 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | 4 | kqnrmlem2 22905 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm) |
12 | 10, 11 | mpancom 685 | . 2 ⊢ ((KQ‘𝐽) ∈ Nrm → 𝐽 ∈ Nrm) |
13 | 6, 12 | impbii 208 | 1 ⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 {crab 3068 ∪ cuni 4839 ↦ cmpt 5156 ‘cfv 6426 Topctop 22052 TopOnctopon 22069 Nrmcnrm 22471 KQckq 22854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-map 8604 df-qtop 17228 df-top 22053 df-topon 22070 df-cld 22180 df-cls 22182 df-cn 22388 df-nrm 22478 df-kq 22855 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |