Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk0kbimka Structured version   Visualization version   GIF version

Theorem ntrk0kbimka 44052
Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka 44051. (Contributed by RP, 12-Jun-2021.)
Assertion
Ref Expression
ntrk0kbimka ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)

Proof of Theorem ntrk0kbimka
StepHypRef Expression
1 pwidg 4620 . . . . 5 (𝐵𝑉𝐵 ∈ 𝒫 𝐵)
21ad2antrr 726 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → 𝐵 ∈ 𝒫 𝐵)
3 0elpw 5356 . . . . 5 ∅ ∈ 𝒫 𝐵
43a1i 11 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∅ ∈ 𝒫 𝐵)
5 simprr 773 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
6 ineq1 4213 . . . . . . 7 (𝑠 = 𝐵 → (𝑠𝑡) = (𝐵𝑡))
76eqeq1d 2739 . . . . . 6 (𝑠 = 𝐵 → ((𝑠𝑡) = ∅ ↔ (𝐵𝑡) = ∅))
8 fveq2 6906 . . . . . . . 8 (𝑠 = 𝐵 → (𝐼𝑠) = (𝐼𝐵))
98ineq1d 4219 . . . . . . 7 (𝑠 = 𝐵 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼𝑡)))
109eqeq1d 2739 . . . . . 6 (𝑠 = 𝐵 → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅))
117, 10imbi12d 344 . . . . 5 (𝑠 = 𝐵 → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅)))
12 ineq2 4214 . . . . . . . 8 (𝑡 = ∅ → (𝐵𝑡) = (𝐵 ∩ ∅))
1312eqeq1d 2739 . . . . . . 7 (𝑡 = ∅ → ((𝐵𝑡) = ∅ ↔ (𝐵 ∩ ∅) = ∅))
14 fveq2 6906 . . . . . . . . 9 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1514ineq2d 4220 . . . . . . . 8 (𝑡 = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼‘∅)))
1615eqeq1d 2739 . . . . . . 7 (𝑡 = ∅ → (((𝐼𝐵) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
1713, 16imbi12d 344 . . . . . 6 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)))
18 in0 4395 . . . . . . 7 (𝐵 ∩ ∅) = ∅
19 pm5.5 361 . . . . . . 7 ((𝐵 ∩ ∅) = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2018, 19mp1i 13 . . . . . 6 (𝑡 = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2117, 20bitrd 279 . . . . 5 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2211, 21rspc2va 3634 . . . 4 (((𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
232, 4, 5, 22syl21anc 838 . . 3 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
2423ex 412 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
25 elmapi 8889 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2625adantl 481 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
273a1i 11 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → ∅ ∈ 𝒫 𝐵)
2826, 27ffvelcdmd 7105 . . . 4 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ∈ 𝒫 𝐵)
2928elpwid 4609 . . 3 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ⊆ 𝐵)
30 simpl 482 . . 3 (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼𝐵) = 𝐵)
31 ineq1 4213 . . . . . . . 8 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = (𝐵 ∩ (𝐼‘∅)))
32 incom 4209 . . . . . . . 8 (𝐵 ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵)
3331, 32eqtrdi 2793 . . . . . . 7 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵))
3433eqeq1d 2739 . . . . . 6 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ ↔ ((𝐼‘∅) ∩ 𝐵) = ∅))
3534biimpd 229 . . . . 5 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼‘∅) ∩ 𝐵) = ∅))
36 reldisj 4453 . . . . . . 7 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵𝐵)))
3736biimpd 229 . . . . . 6 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ → (𝐼‘∅) ⊆ (𝐵𝐵)))
38 difid 4376 . . . . . . . 8 (𝐵𝐵) = ∅
3938sseq2i 4013 . . . . . . 7 ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ (𝐼‘∅) ⊆ ∅)
40 ss0 4402 . . . . . . 7 ((𝐼‘∅) ⊆ ∅ → (𝐼‘∅) = ∅)
4139, 40sylbi 217 . . . . . 6 ((𝐼‘∅) ⊆ (𝐵𝐵) → (𝐼‘∅) = ∅)
4237, 41syl6com 37 . . . . 5 (((𝐼‘∅) ∩ 𝐵) = ∅ → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅))
4335, 42syl6com 37 . . . 4 (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼𝐵) = 𝐵 → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅)))
4443com13 88 . . 3 ((𝐼‘∅) ⊆ 𝐵 → ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4529, 30, 44syl2im 40 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4624, 45mpdd 43 1 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cdif 3948  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator