Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk0kbimka Structured version   Visualization version   GIF version

Theorem ntrk0kbimka 44080
Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka 44079. (Contributed by RP, 12-Jun-2021.)
Assertion
Ref Expression
ntrk0kbimka ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)

Proof of Theorem ntrk0kbimka
StepHypRef Expression
1 pwidg 4567 . . . . 5 (𝐵𝑉𝐵 ∈ 𝒫 𝐵)
21ad2antrr 726 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → 𝐵 ∈ 𝒫 𝐵)
3 0elpw 5292 . . . . 5 ∅ ∈ 𝒫 𝐵
43a1i 11 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∅ ∈ 𝒫 𝐵)
5 simprr 772 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
6 ineq1 4160 . . . . . . 7 (𝑠 = 𝐵 → (𝑠𝑡) = (𝐵𝑡))
76eqeq1d 2733 . . . . . 6 (𝑠 = 𝐵 → ((𝑠𝑡) = ∅ ↔ (𝐵𝑡) = ∅))
8 fveq2 6822 . . . . . . . 8 (𝑠 = 𝐵 → (𝐼𝑠) = (𝐼𝐵))
98ineq1d 4166 . . . . . . 7 (𝑠 = 𝐵 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼𝑡)))
109eqeq1d 2733 . . . . . 6 (𝑠 = 𝐵 → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅))
117, 10imbi12d 344 . . . . 5 (𝑠 = 𝐵 → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅)))
12 ineq2 4161 . . . . . . . 8 (𝑡 = ∅ → (𝐵𝑡) = (𝐵 ∩ ∅))
1312eqeq1d 2733 . . . . . . 7 (𝑡 = ∅ → ((𝐵𝑡) = ∅ ↔ (𝐵 ∩ ∅) = ∅))
14 fveq2 6822 . . . . . . . . 9 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1514ineq2d 4167 . . . . . . . 8 (𝑡 = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼‘∅)))
1615eqeq1d 2733 . . . . . . 7 (𝑡 = ∅ → (((𝐼𝐵) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
1713, 16imbi12d 344 . . . . . 6 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)))
18 in0 4342 . . . . . . 7 (𝐵 ∩ ∅) = ∅
19 pm5.5 361 . . . . . . 7 ((𝐵 ∩ ∅) = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2018, 19mp1i 13 . . . . . 6 (𝑡 = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2117, 20bitrd 279 . . . . 5 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2211, 21rspc2va 3584 . . . 4 (((𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
232, 4, 5, 22syl21anc 837 . . 3 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
2423ex 412 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
25 elmapi 8773 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2625adantl 481 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
273a1i 11 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → ∅ ∈ 𝒫 𝐵)
2826, 27ffvelcdmd 7018 . . . 4 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ∈ 𝒫 𝐵)
2928elpwid 4556 . . 3 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ⊆ 𝐵)
30 simpl 482 . . 3 (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼𝐵) = 𝐵)
31 ineq1 4160 . . . . . . . 8 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = (𝐵 ∩ (𝐼‘∅)))
32 incom 4156 . . . . . . . 8 (𝐵 ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵)
3331, 32eqtrdi 2782 . . . . . . 7 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵))
3433eqeq1d 2733 . . . . . 6 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ ↔ ((𝐼‘∅) ∩ 𝐵) = ∅))
3534biimpd 229 . . . . 5 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼‘∅) ∩ 𝐵) = ∅))
36 reldisj 4400 . . . . . . 7 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵𝐵)))
3736biimpd 229 . . . . . 6 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ → (𝐼‘∅) ⊆ (𝐵𝐵)))
38 difid 4323 . . . . . . . 8 (𝐵𝐵) = ∅
3938sseq2i 3959 . . . . . . 7 ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ (𝐼‘∅) ⊆ ∅)
40 ss0 4349 . . . . . . 7 ((𝐼‘∅) ⊆ ∅ → (𝐼‘∅) = ∅)
4139, 40sylbi 217 . . . . . 6 ((𝐼‘∅) ⊆ (𝐵𝐵) → (𝐼‘∅) = ∅)
4237, 41syl6com 37 . . . . 5 (((𝐼‘∅) ∩ 𝐵) = ∅ → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅))
4335, 42syl6com 37 . . . 4 (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼𝐵) = 𝐵 → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅)))
4443com13 88 . . 3 ((𝐼‘∅) ⊆ 𝐵 → ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4529, 30, 44syl2im 40 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4624, 45mpdd 43 1 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator