Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk0kbimka Structured version   Visualization version   GIF version

Theorem ntrk0kbimka 44035
Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka 44034. (Contributed by RP, 12-Jun-2021.)
Assertion
Ref Expression
ntrk0kbimka ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)

Proof of Theorem ntrk0kbimka
StepHypRef Expression
1 pwidg 4586 . . . . 5 (𝐵𝑉𝐵 ∈ 𝒫 𝐵)
21ad2antrr 726 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → 𝐵 ∈ 𝒫 𝐵)
3 0elpw 5314 . . . . 5 ∅ ∈ 𝒫 𝐵
43a1i 11 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∅ ∈ 𝒫 𝐵)
5 simprr 772 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
6 ineq1 4179 . . . . . . 7 (𝑠 = 𝐵 → (𝑠𝑡) = (𝐵𝑡))
76eqeq1d 2732 . . . . . 6 (𝑠 = 𝐵 → ((𝑠𝑡) = ∅ ↔ (𝐵𝑡) = ∅))
8 fveq2 6861 . . . . . . . 8 (𝑠 = 𝐵 → (𝐼𝑠) = (𝐼𝐵))
98ineq1d 4185 . . . . . . 7 (𝑠 = 𝐵 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼𝑡)))
109eqeq1d 2732 . . . . . 6 (𝑠 = 𝐵 → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅))
117, 10imbi12d 344 . . . . 5 (𝑠 = 𝐵 → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅)))
12 ineq2 4180 . . . . . . . 8 (𝑡 = ∅ → (𝐵𝑡) = (𝐵 ∩ ∅))
1312eqeq1d 2732 . . . . . . 7 (𝑡 = ∅ → ((𝐵𝑡) = ∅ ↔ (𝐵 ∩ ∅) = ∅))
14 fveq2 6861 . . . . . . . . 9 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1514ineq2d 4186 . . . . . . . 8 (𝑡 = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼‘∅)))
1615eqeq1d 2732 . . . . . . 7 (𝑡 = ∅ → (((𝐼𝐵) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
1713, 16imbi12d 344 . . . . . 6 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)))
18 in0 4361 . . . . . . 7 (𝐵 ∩ ∅) = ∅
19 pm5.5 361 . . . . . . 7 ((𝐵 ∩ ∅) = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2018, 19mp1i 13 . . . . . 6 (𝑡 = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2117, 20bitrd 279 . . . . 5 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2211, 21rspc2va 3603 . . . 4 (((𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
232, 4, 5, 22syl21anc 837 . . 3 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
2423ex 412 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
25 elmapi 8825 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2625adantl 481 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
273a1i 11 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → ∅ ∈ 𝒫 𝐵)
2826, 27ffvelcdmd 7060 . . . 4 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ∈ 𝒫 𝐵)
2928elpwid 4575 . . 3 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ⊆ 𝐵)
30 simpl 482 . . 3 (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼𝐵) = 𝐵)
31 ineq1 4179 . . . . . . . 8 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = (𝐵 ∩ (𝐼‘∅)))
32 incom 4175 . . . . . . . 8 (𝐵 ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵)
3331, 32eqtrdi 2781 . . . . . . 7 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵))
3433eqeq1d 2732 . . . . . 6 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ ↔ ((𝐼‘∅) ∩ 𝐵) = ∅))
3534biimpd 229 . . . . 5 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼‘∅) ∩ 𝐵) = ∅))
36 reldisj 4419 . . . . . . 7 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵𝐵)))
3736biimpd 229 . . . . . 6 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ → (𝐼‘∅) ⊆ (𝐵𝐵)))
38 difid 4342 . . . . . . . 8 (𝐵𝐵) = ∅
3938sseq2i 3979 . . . . . . 7 ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ (𝐼‘∅) ⊆ ∅)
40 ss0 4368 . . . . . . 7 ((𝐼‘∅) ⊆ ∅ → (𝐼‘∅) = ∅)
4139, 40sylbi 217 . . . . . 6 ((𝐼‘∅) ⊆ (𝐵𝐵) → (𝐼‘∅) = ∅)
4237, 41syl6com 37 . . . . 5 (((𝐼‘∅) ∩ 𝐵) = ∅ → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅))
4335, 42syl6com 37 . . . 4 (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼𝐵) = 𝐵 → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅)))
4443com13 88 . . 3 ((𝐼‘∅) ⊆ 𝐵 → ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4529, 30, 44syl2im 40 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4624, 45mpdd 43 1 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator