Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk0kbimka Structured version   Visualization version   GIF version

Theorem ntrk0kbimka 44063
Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka 44062. (Contributed by RP, 12-Jun-2021.)
Assertion
Ref Expression
ntrk0kbimka ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)

Proof of Theorem ntrk0kbimka
StepHypRef Expression
1 pwidg 4595 . . . . 5 (𝐵𝑉𝐵 ∈ 𝒫 𝐵)
21ad2antrr 726 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → 𝐵 ∈ 𝒫 𝐵)
3 0elpw 5326 . . . . 5 ∅ ∈ 𝒫 𝐵
43a1i 11 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∅ ∈ 𝒫 𝐵)
5 simprr 772 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
6 ineq1 4188 . . . . . . 7 (𝑠 = 𝐵 → (𝑠𝑡) = (𝐵𝑡))
76eqeq1d 2737 . . . . . 6 (𝑠 = 𝐵 → ((𝑠𝑡) = ∅ ↔ (𝐵𝑡) = ∅))
8 fveq2 6876 . . . . . . . 8 (𝑠 = 𝐵 → (𝐼𝑠) = (𝐼𝐵))
98ineq1d 4194 . . . . . . 7 (𝑠 = 𝐵 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼𝑡)))
109eqeq1d 2737 . . . . . 6 (𝑠 = 𝐵 → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅))
117, 10imbi12d 344 . . . . 5 (𝑠 = 𝐵 → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅)))
12 ineq2 4189 . . . . . . . 8 (𝑡 = ∅ → (𝐵𝑡) = (𝐵 ∩ ∅))
1312eqeq1d 2737 . . . . . . 7 (𝑡 = ∅ → ((𝐵𝑡) = ∅ ↔ (𝐵 ∩ ∅) = ∅))
14 fveq2 6876 . . . . . . . . 9 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1514ineq2d 4195 . . . . . . . 8 (𝑡 = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼‘∅)))
1615eqeq1d 2737 . . . . . . 7 (𝑡 = ∅ → (((𝐼𝐵) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
1713, 16imbi12d 344 . . . . . 6 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)))
18 in0 4370 . . . . . . 7 (𝐵 ∩ ∅) = ∅
19 pm5.5 361 . . . . . . 7 ((𝐵 ∩ ∅) = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2018, 19mp1i 13 . . . . . 6 (𝑡 = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2117, 20bitrd 279 . . . . 5 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2211, 21rspc2va 3613 . . . 4 (((𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
232, 4, 5, 22syl21anc 837 . . 3 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
2423ex 412 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
25 elmapi 8863 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2625adantl 481 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
273a1i 11 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → ∅ ∈ 𝒫 𝐵)
2826, 27ffvelcdmd 7075 . . . 4 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ∈ 𝒫 𝐵)
2928elpwid 4584 . . 3 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ⊆ 𝐵)
30 simpl 482 . . 3 (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼𝐵) = 𝐵)
31 ineq1 4188 . . . . . . . 8 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = (𝐵 ∩ (𝐼‘∅)))
32 incom 4184 . . . . . . . 8 (𝐵 ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵)
3331, 32eqtrdi 2786 . . . . . . 7 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵))
3433eqeq1d 2737 . . . . . 6 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ ↔ ((𝐼‘∅) ∩ 𝐵) = ∅))
3534biimpd 229 . . . . 5 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼‘∅) ∩ 𝐵) = ∅))
36 reldisj 4428 . . . . . . 7 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵𝐵)))
3736biimpd 229 . . . . . 6 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ → (𝐼‘∅) ⊆ (𝐵𝐵)))
38 difid 4351 . . . . . . . 8 (𝐵𝐵) = ∅
3938sseq2i 3988 . . . . . . 7 ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ (𝐼‘∅) ⊆ ∅)
40 ss0 4377 . . . . . . 7 ((𝐼‘∅) ⊆ ∅ → (𝐼‘∅) = ∅)
4139, 40sylbi 217 . . . . . 6 ((𝐼‘∅) ⊆ (𝐵𝐵) → (𝐼‘∅) = ∅)
4237, 41syl6com 37 . . . . 5 (((𝐼‘∅) ∩ 𝐵) = ∅ → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅))
4335, 42syl6com 37 . . . 4 (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼𝐵) = 𝐵 → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅)))
4443com13 88 . . 3 ((𝐼‘∅) ⊆ 𝐵 → ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4529, 30, 44syl2im 40 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4624, 45mpdd 43 1 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator