Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk0kbimka Structured version   Visualization version   GIF version

Theorem ntrk0kbimka 40382
Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka 40381. (Contributed by RP, 12-Jun-2021.)
Assertion
Ref Expression
ntrk0kbimka ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)

Proof of Theorem ntrk0kbimka
StepHypRef Expression
1 pwidg 4556 . . . . 5 (𝐵𝑉𝐵 ∈ 𝒫 𝐵)
21ad2antrr 724 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → 𝐵 ∈ 𝒫 𝐵)
3 0elpw 5249 . . . . 5 ∅ ∈ 𝒫 𝐵
43a1i 11 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∅ ∈ 𝒫 𝐵)
5 simprr 771 . . . 4 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
6 ineq1 4181 . . . . . . 7 (𝑠 = 𝐵 → (𝑠𝑡) = (𝐵𝑡))
76eqeq1d 2823 . . . . . 6 (𝑠 = 𝐵 → ((𝑠𝑡) = ∅ ↔ (𝐵𝑡) = ∅))
8 fveq2 6665 . . . . . . . 8 (𝑠 = 𝐵 → (𝐼𝑠) = (𝐼𝐵))
98ineq1d 4188 . . . . . . 7 (𝑠 = 𝐵 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼𝑡)))
109eqeq1d 2823 . . . . . 6 (𝑠 = 𝐵 → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅))
117, 10imbi12d 347 . . . . 5 (𝑠 = 𝐵 → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅)))
12 ineq2 4183 . . . . . . . 8 (𝑡 = ∅ → (𝐵𝑡) = (𝐵 ∩ ∅))
1312eqeq1d 2823 . . . . . . 7 (𝑡 = ∅ → ((𝐵𝑡) = ∅ ↔ (𝐵 ∩ ∅) = ∅))
14 fveq2 6665 . . . . . . . . 9 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1514ineq2d 4189 . . . . . . . 8 (𝑡 = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ((𝐼𝐵) ∩ (𝐼‘∅)))
1615eqeq1d 2823 . . . . . . 7 (𝑡 = ∅ → (((𝐼𝐵) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
1713, 16imbi12d 347 . . . . . 6 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)))
18 in0 4345 . . . . . . 7 (𝐵 ∩ ∅) = ∅
19 pm5.5 364 . . . . . . 7 ((𝐵 ∩ ∅) = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2018, 19mp1i 13 . . . . . 6 (𝑡 = ∅ → (((𝐵 ∩ ∅) = ∅ → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2117, 20bitrd 281 . . . . 5 (𝑡 = ∅ → (((𝐵𝑡) = ∅ → ((𝐼𝐵) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
2211, 21rspc2va 3634 . . . 4 (((𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
232, 4, 5, 22syl21anc 835 . . 3 (((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ ((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅)
2423ex 415 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → ((𝐼𝐵) ∩ (𝐼‘∅)) = ∅))
25 elmapi 8422 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2625adantl 484 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
273a1i 11 . . . . 5 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → ∅ ∈ 𝒫 𝐵)
2826, 27ffvelrnd 6847 . . . 4 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ∈ 𝒫 𝐵)
2928elpwid 4553 . . 3 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐼‘∅) ⊆ 𝐵)
30 simpl 485 . . 3 (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼𝐵) = 𝐵)
31 ineq1 4181 . . . . . . . 8 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = (𝐵 ∩ (𝐼‘∅)))
32 incom 4178 . . . . . . . 8 (𝐵 ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵)
3331, 32syl6eq 2872 . . . . . . 7 ((𝐼𝐵) = 𝐵 → ((𝐼𝐵) ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵))
3433eqeq1d 2823 . . . . . 6 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ ↔ ((𝐼‘∅) ∩ 𝐵) = ∅))
3534biimpd 231 . . . . 5 ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼‘∅) ∩ 𝐵) = ∅))
36 reldisj 4402 . . . . . . 7 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵𝐵)))
3736biimpd 231 . . . . . 6 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ → (𝐼‘∅) ⊆ (𝐵𝐵)))
38 difid 4330 . . . . . . . 8 (𝐵𝐵) = ∅
3938sseq2i 3996 . . . . . . 7 ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ (𝐼‘∅) ⊆ ∅)
40 ss0 4352 . . . . . . 7 ((𝐼‘∅) ⊆ ∅ → (𝐼‘∅) = ∅)
4139, 40sylbi 219 . . . . . 6 ((𝐼‘∅) ⊆ (𝐵𝐵) → (𝐼‘∅) = ∅)
4237, 41syl6com 37 . . . . 5 (((𝐼‘∅) ∩ 𝐵) = ∅ → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅))
4335, 42syl6com 37 . . . 4 (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼𝐵) = 𝐵 → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅)))
4443com13 88 . . 3 ((𝐼‘∅) ⊆ 𝐵 → ((𝐼𝐵) = 𝐵 → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4529, 30, 44syl2im 40 . 2 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (((𝐼𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) = ∅)))
4624, 45mpdd 43 1 ((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  cdif 3933  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  wf 6346  cfv 6350  (class class class)co 7150  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator