MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vafval Structured version   Visualization version   GIF version

Theorem vafval 29010
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
vafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vafval 𝐺 = (1st ‘(1st𝑈))

Proof of Theorem vafval
StepHypRef Expression
1 vafval.2 . 2 𝐺 = ( +𝑣𝑈)
2 df-va 29002 . . . . 5 +𝑣 = (1st ∘ 1st )
32fveq1i 6805 . . . 4 ( +𝑣𝑈) = ((1st ∘ 1st )‘𝑈)
4 fo1st 7883 . . . . . 6 1st :V–onto→V
5 fof 6718 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6899 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
86, 7mpan 688 . . . 4 (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
93, 8eqtrid 2788 . . 3 (𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
10 fvprc 6796 . . . 4 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
11 fvprc 6796 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6808 . . . . 5 𝑈 ∈ V → (1st ‘(1st𝑈)) = (1st ‘∅))
13 1st0 7869 . . . . 5 (1st ‘∅) = ∅
1412, 13eqtr2di 2793 . . . 4 𝑈 ∈ V → ∅ = (1st ‘(1st𝑈)))
1510, 14eqtrd 2776 . . 3 𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
169, 15pm2.61i 182 . 2 ( +𝑣𝑈) = (1st ‘(1st𝑈))
171, 16eqtri 2764 1 𝐺 = (1st ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2104  Vcvv 3437  c0 4262  ccom 5604  wf 6454  ontowfo 6456  cfv 6458  1st c1st 7861   +𝑣 cpv 28992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fo 6464  df-fv 6466  df-1st 7863  df-va 29002
This theorem is referenced by:  nvvop  29016  nvablo  29023  nvsf  29026  nvscl  29033  nvsid  29034  nvsass  29035  nvdi  29037  nvdir  29038  nv2  29039  nv0  29044  nvsz  29045  nvinv  29046  cnnvg  29085  phop  29225  ip0i  29232  ipdirilem  29236  h2hva  29381  hhssva  29664  hhshsslem1  29674
  Copyright terms: Public domain W3C validator