MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vafval Structured version   Visualization version   GIF version

Theorem vafval 28684
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
vafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vafval 𝐺 = (1st ‘(1st𝑈))

Proof of Theorem vafval
StepHypRef Expression
1 vafval.2 . 2 𝐺 = ( +𝑣𝑈)
2 df-va 28676 . . . . 5 +𝑣 = (1st ∘ 1st )
32fveq1i 6718 . . . 4 ( +𝑣𝑈) = ((1st ∘ 1st )‘𝑈)
4 fo1st 7781 . . . . . 6 1st :V–onto→V
5 fof 6633 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6810 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
86, 7mpan 690 . . . 4 (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
93, 8syl5eq 2790 . . 3 (𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
10 fvprc 6709 . . . 4 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
11 fvprc 6709 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6721 . . . . 5 𝑈 ∈ V → (1st ‘(1st𝑈)) = (1st ‘∅))
13 1st0 7767 . . . . 5 (1st ‘∅) = ∅
1412, 13eqtr2di 2795 . . . 4 𝑈 ∈ V → ∅ = (1st ‘(1st𝑈)))
1510, 14eqtrd 2777 . . 3 𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
169, 15pm2.61i 185 . 2 ( +𝑣𝑈) = (1st ‘(1st𝑈))
171, 16eqtri 2765 1 𝐺 = (1st ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wcel 2110  Vcvv 3408  c0 4237  ccom 5555  wf 6376  ontowfo 6378  cfv 6380  1st c1st 7759   +𝑣 cpv 28666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fo 6386  df-fv 6388  df-1st 7761  df-va 28676
This theorem is referenced by:  nvvop  28690  nvablo  28697  nvsf  28700  nvscl  28707  nvsid  28708  nvsass  28709  nvdi  28711  nvdir  28712  nv2  28713  nv0  28718  nvsz  28719  nvinv  28720  cnnvg  28759  phop  28899  ip0i  28906  ipdirilem  28910  h2hva  29055  hhssva  29338  hhshsslem1  29348
  Copyright terms: Public domain W3C validator