MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vafval Structured version   Visualization version   GIF version

Theorem vafval 28382
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
vafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vafval 𝐺 = (1st ‘(1st𝑈))

Proof of Theorem vafval
StepHypRef Expression
1 vafval.2 . 2 𝐺 = ( +𝑣𝑈)
2 df-va 28374 . . . . 5 +𝑣 = (1st ∘ 1st )
32fveq1i 6673 . . . 4 ( +𝑣𝑈) = ((1st ∘ 1st )‘𝑈)
4 fo1st 7711 . . . . . 6 1st :V–onto→V
5 fof 6592 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6762 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
86, 7mpan 688 . . . 4 (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
93, 8syl5eq 2870 . . 3 (𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
10 fvprc 6665 . . . 4 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
11 fvprc 6665 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6676 . . . . 5 𝑈 ∈ V → (1st ‘(1st𝑈)) = (1st ‘∅))
13 1st0 7697 . . . . 5 (1st ‘∅) = ∅
1412, 13syl6req 2875 . . . 4 𝑈 ∈ V → ∅ = (1st ‘(1st𝑈)))
1510, 14eqtrd 2858 . . 3 𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
169, 15pm2.61i 184 . 2 ( +𝑣𝑈) = (1st ‘(1st𝑈))
171, 16eqtri 2846 1 𝐺 = (1st ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  ccom 5561  wf 6353  ontowfo 6355  cfv 6357  1st c1st 7689   +𝑣 cpv 28364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-va 28374
This theorem is referenced by:  nvvop  28388  nvablo  28395  nvsf  28398  nvscl  28405  nvsid  28406  nvsass  28407  nvdi  28409  nvdir  28410  nv2  28411  nv0  28416  nvsz  28417  nvinv  28418  cnnvg  28457  phop  28597  ip0i  28604  ipdirilem  28608  h2hva  28753  hhssva  29036  hhshsslem1  29046
  Copyright terms: Public domain W3C validator