![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vafval | Structured version Visualization version GIF version |
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vafval | ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vafval.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | df-va 28055 | . . . . 5 ⊢ +𝑣 = (1st ∘ 1st ) | |
3 | 2 | fveq1i 6542 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ((1st ∘ 1st )‘𝑈) |
4 | fo1st 7568 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6461 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fvco3 6630 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) | |
8 | 6, 7 | mpan 686 | . . . 4 ⊢ (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) |
9 | 3, 8 | syl5eq 2842 | . . 3 ⊢ (𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
10 | fvprc 6534 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
11 | fvprc 6534 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
12 | 11 | fveq2d 6545 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (1st ‘(1st ‘𝑈)) = (1st ‘∅)) |
13 | 1st0 7554 | . . . . 5 ⊢ (1st ‘∅) = ∅ | |
14 | 12, 13 | syl6req 2847 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (1st ‘(1st ‘𝑈))) |
15 | 10, 14 | eqtrd 2830 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
16 | 9, 15 | pm2.61i 183 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
17 | 1, 16 | eqtri 2818 | 1 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1522 ∈ wcel 2080 Vcvv 3436 ∅c0 4213 ∘ ccom 5450 ⟶wf 6224 –onto→wfo 6226 ‘cfv 6228 1st c1st 7546 +𝑣 cpv 28045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-sbc 3708 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-fo 6234 df-fv 6236 df-1st 7548 df-va 28055 |
This theorem is referenced by: nvvop 28069 nvablo 28076 nvsf 28079 nvscl 28086 nvsid 28087 nvsass 28088 nvdi 28090 nvdir 28091 nv2 28092 nv0 28097 nvsz 28098 nvinv 28099 cnnvg 28138 phop 28278 ip0i 28285 ipdirilem 28289 h2hva 28434 hhssva 28717 hhshsslem1 28727 |
Copyright terms: Public domain | W3C validator |