![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vafval | Structured version Visualization version GIF version |
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vafval | ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vafval.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | df-va 30624 | . . . . 5 ⊢ +𝑣 = (1st ∘ 1st ) | |
3 | 2 | fveq1i 6908 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ((1st ∘ 1st )‘𝑈) |
4 | fo1st 8033 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6821 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fvco3 7008 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) | |
8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) |
9 | 3, 8 | eqtrid 2787 | . . 3 ⊢ (𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
10 | fvprc 6899 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
11 | fvprc 6899 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
12 | 11 | fveq2d 6911 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (1st ‘(1st ‘𝑈)) = (1st ‘∅)) |
13 | 1st0 8019 | . . . . 5 ⊢ (1st ‘∅) = ∅ | |
14 | 12, 13 | eqtr2di 2792 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (1st ‘(1st ‘𝑈))) |
15 | 10, 14 | eqtrd 2775 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
17 | 1, 16 | eqtri 2763 | 1 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ∘ ccom 5693 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 1st c1st 8011 +𝑣 cpv 30614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-va 30624 |
This theorem is referenced by: nvvop 30638 nvablo 30645 nvsf 30648 nvscl 30655 nvsid 30656 nvsass 30657 nvdi 30659 nvdir 30660 nv2 30661 nv0 30666 nvsz 30667 nvinv 30668 cnnvg 30707 phop 30847 ip0i 30854 ipdirilem 30858 h2hva 31003 hhssva 31286 hhshsslem1 31296 |
Copyright terms: Public domain | W3C validator |