MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vafval Structured version   Visualization version   GIF version

Theorem vafval 28944
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
vafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vafval 𝐺 = (1st ‘(1st𝑈))

Proof of Theorem vafval
StepHypRef Expression
1 vafval.2 . 2 𝐺 = ( +𝑣𝑈)
2 df-va 28936 . . . . 5 +𝑣 = (1st ∘ 1st )
32fveq1i 6769 . . . 4 ( +𝑣𝑈) = ((1st ∘ 1st )‘𝑈)
4 fo1st 7837 . . . . . 6 1st :V–onto→V
5 fof 6684 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6861 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
86, 7mpan 686 . . . 4 (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st𝑈)))
93, 8eqtrid 2791 . . 3 (𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
10 fvprc 6760 . . . 4 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
11 fvprc 6760 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6772 . . . . 5 𝑈 ∈ V → (1st ‘(1st𝑈)) = (1st ‘∅))
13 1st0 7823 . . . . 5 (1st ‘∅) = ∅
1412, 13eqtr2di 2796 . . . 4 𝑈 ∈ V → ∅ = (1st ‘(1st𝑈)))
1510, 14eqtrd 2779 . . 3 𝑈 ∈ V → ( +𝑣𝑈) = (1st ‘(1st𝑈)))
169, 15pm2.61i 182 . 2 ( +𝑣𝑈) = (1st ‘(1st𝑈))
171, 16eqtri 2767 1 𝐺 = (1st ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2109  Vcvv 3430  c0 4261  ccom 5592  wf 6426  ontowfo 6428  cfv 6430  1st c1st 7815   +𝑣 cpv 28926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fo 6436  df-fv 6438  df-1st 7817  df-va 28936
This theorem is referenced by:  nvvop  28950  nvablo  28957  nvsf  28960  nvscl  28967  nvsid  28968  nvsass  28969  nvdi  28971  nvdir  28972  nv2  28973  nv0  28978  nvsz  28979  nvinv  28980  cnnvg  29019  phop  29159  ip0i  29166  ipdirilem  29170  h2hva  29315  hhssva  29598  hhshsslem1  29608
  Copyright terms: Public domain W3C validator