Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vafval | Structured version Visualization version GIF version |
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vafval | ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vafval.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | df-va 28676 | . . . . 5 ⊢ +𝑣 = (1st ∘ 1st ) | |
3 | 2 | fveq1i 6718 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ((1st ∘ 1st )‘𝑈) |
4 | fo1st 7781 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6633 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fvco3 6810 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) | |
8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) |
9 | 3, 8 | syl5eq 2790 | . . 3 ⊢ (𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
10 | fvprc 6709 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
11 | fvprc 6709 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
12 | 11 | fveq2d 6721 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (1st ‘(1st ‘𝑈)) = (1st ‘∅)) |
13 | 1st0 7767 | . . . . 5 ⊢ (1st ‘∅) = ∅ | |
14 | 12, 13 | eqtr2di 2795 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (1st ‘(1st ‘𝑈))) |
15 | 10, 14 | eqtrd 2777 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
16 | 9, 15 | pm2.61i 185 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
17 | 1, 16 | eqtri 2765 | 1 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∅c0 4237 ∘ ccom 5555 ⟶wf 6376 –onto→wfo 6378 ‘cfv 6380 1st c1st 7759 +𝑣 cpv 28666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fo 6386 df-fv 6388 df-1st 7761 df-va 28676 |
This theorem is referenced by: nvvop 28690 nvablo 28697 nvsf 28700 nvscl 28707 nvsid 28708 nvsass 28709 nvdi 28711 nvdir 28712 nv2 28713 nv0 28718 nvsz 28719 nvinv 28720 cnnvg 28759 phop 28899 ip0i 28906 ipdirilem 28910 h2hva 29055 hhssva 29338 hhshsslem1 29348 |
Copyright terms: Public domain | W3C validator |