| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vafval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| vafval | ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vafval.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | df-va 30570 | . . . . 5 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 3 | 2 | fveq1i 6823 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ((1st ∘ 1st )‘𝑈) |
| 4 | fo1st 7941 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6735 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fvco3 6921 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) | |
| 8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 9 | 3, 8 | eqtrid 2778 | . . 3 ⊢ (𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 10 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 11 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
| 12 | 11 | fveq2d 6826 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (1st ‘(1st ‘𝑈)) = (1st ‘∅)) |
| 13 | 1st0 7927 | . . . . 5 ⊢ (1st ‘∅) = ∅ | |
| 14 | 12, 13 | eqtr2di 2783 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (1st ‘(1st ‘𝑈))) |
| 15 | 10, 14 | eqtrd 2766 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
| 17 | 1, 16 | eqtri 2754 | 1 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ∘ ccom 5620 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 1st c1st 7919 +𝑣 cpv 30560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-va 30570 |
| This theorem is referenced by: nvvop 30584 nvablo 30591 nvsf 30594 nvscl 30601 nvsid 30602 nvsass 30603 nvdi 30605 nvdir 30606 nv2 30607 nv0 30612 nvsz 30613 nvinv 30614 cnnvg 30653 phop 30793 ip0i 30800 ipdirilem 30804 h2hva 30949 hhssva 31232 hhshsslem1 31242 |
| Copyright terms: Public domain | W3C validator |