| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vafval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| vafval | ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vafval.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | df-va 30531 | . . . . 5 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 3 | 2 | fveq1i 6862 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ((1st ∘ 1st )‘𝑈) |
| 4 | fo1st 7991 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6775 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fvco3 6963 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) | |
| 8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 9 | 3, 8 | eqtrid 2777 | . . 3 ⊢ (𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 10 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 11 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
| 12 | 11 | fveq2d 6865 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (1st ‘(1st ‘𝑈)) = (1st ‘∅)) |
| 13 | 1st0 7977 | . . . . 5 ⊢ (1st ‘∅) = ∅ | |
| 14 | 12, 13 | eqtr2di 2782 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (1st ‘(1st ‘𝑈))) |
| 15 | 10, 14 | eqtrd 2765 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
| 17 | 1, 16 | eqtri 2753 | 1 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ∘ ccom 5645 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 1st c1st 7969 +𝑣 cpv 30521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-va 30531 |
| This theorem is referenced by: nvvop 30545 nvablo 30552 nvsf 30555 nvscl 30562 nvsid 30563 nvsass 30564 nvdi 30566 nvdir 30567 nv2 30568 nv0 30573 nvsz 30574 nvinv 30575 cnnvg 30614 phop 30754 ip0i 30761 ipdirilem 30765 h2hva 30910 hhssva 31193 hhshsslem1 31203 |
| Copyright terms: Public domain | W3C validator |