| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vafval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| vafval | ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vafval.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | df-va 30576 | . . . . 5 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 3 | 2 | fveq1i 6877 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ((1st ∘ 1st )‘𝑈) |
| 4 | fo1st 8008 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6790 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fvco3 6978 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) | |
| 8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 9 | 3, 8 | eqtrid 2782 | . . 3 ⊢ (𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 10 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 11 | fvprc 6868 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
| 12 | 11 | fveq2d 6880 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (1st ‘(1st ‘𝑈)) = (1st ‘∅)) |
| 13 | 1st0 7994 | . . . . 5 ⊢ (1st ‘∅) = ∅ | |
| 14 | 12, 13 | eqtr2di 2787 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (1st ‘(1st ‘𝑈))) |
| 15 | 10, 14 | eqtrd 2770 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
| 16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
| 17 | 1, 16 | eqtri 2758 | 1 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ∘ ccom 5658 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 1st c1st 7986 +𝑣 cpv 30566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-va 30576 |
| This theorem is referenced by: nvvop 30590 nvablo 30597 nvsf 30600 nvscl 30607 nvsid 30608 nvsass 30609 nvdi 30611 nvdir 30612 nv2 30613 nv0 30618 nvsz 30619 nvinv 30620 cnnvg 30659 phop 30799 ip0i 30806 ipdirilem 30810 h2hva 30955 hhssva 31238 hhshsslem1 31248 |
| Copyright terms: Public domain | W3C validator |