Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onelord Structured version   Visualization version   GIF version

Theorem onelord 43241
Description: Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6388 and eloni 6373. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
onelord ((𝐴 ∈ On ∧ 𝐵𝐴) → Ord 𝐵)

Proof of Theorem onelord
StepHypRef Expression
1 onelon 6388 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 eloni 6373 . 2 (𝐵 ∈ On → Ord 𝐵)
31, 2syl 17 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Ord word 6362  Oncon0 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator