| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onelord | Structured version Visualization version GIF version | ||
| Description: Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6388 and eloni 6373. (Contributed by RP, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| onelord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon 6388 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 2 | eloni 6373 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Ord word 6362 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |