Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onelord Structured version   Visualization version   GIF version

Theorem onelord 43233
Description: Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6359 and eloni 6344. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
onelord ((𝐴 ∈ On ∧ 𝐵𝐴) → Ord 𝐵)

Proof of Theorem onelord
StepHypRef Expression
1 onelon 6359 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 eloni 6344 . 2 (𝐵 ∈ On → Ord 𝐵)
31, 2syl 17 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Ord word 6333  Oncon0 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-tr 5217  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-on 6338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator