![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onelord | Structured version Visualization version GIF version |
Description: Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6415 and eloni 6400. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
onelord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon 6415 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
2 | eloni 6400 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Ord word 6389 Oncon0 6390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-ord 6393 df-on 6394 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |