Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onelord Structured version   Visualization version   GIF version

Theorem onelord 42465
Description: Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6389 and eloni 6374. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
onelord ((𝐴 ∈ On ∧ 𝐵𝐴) → Ord 𝐵)

Proof of Theorem onelord
StepHypRef Expression
1 onelon 6389 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 eloni 6374 . 2 (𝐵 ∈ On → Ord 𝐵)
31, 2syl 17 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  Ord word 6363  Oncon0 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator