![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onepsuc | Structured version Visualization version GIF version |
Description: Every ordinal is less than its successor, relationship version. Lemma 1.7 of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
onepsuc | ⊢ (𝐴 ∈ On → 𝐴 E suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6471 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
2 | onsuc 7841 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | epelg 5600 | . . 3 ⊢ (suc 𝐴 ∈ On → (𝐴 E suc 𝐴 ↔ 𝐴 ∈ suc 𝐴)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (𝐴 E suc 𝐴 ↔ 𝐴 ∈ suc 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ On → 𝐴 E suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 E cep 5598 Oncon0 6390 suc csuc 6392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-ord 6393 df-on 6394 df-suc 6396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |