Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onepsuc Structured version   Visualization version   GIF version

Theorem onepsuc 43242
Description: Every ordinal is less than its successor, relationship version. Lemma 1.7 of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
onepsuc (𝐴 ∈ On → 𝐴 E suc 𝐴)

Proof of Theorem onepsuc
StepHypRef Expression
1 sucidg 6445 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 onsuc 7813 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
3 epelg 5565 . . 3 (suc 𝐴 ∈ On → (𝐴 E suc 𝐴𝐴 ∈ suc 𝐴))
42, 3syl 17 . 2 (𝐴 ∈ On → (𝐴 E suc 𝐴𝐴 ∈ suc 𝐴))
51, 4mpbird 257 1 (𝐴 ∈ On → 𝐴 E suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107   class class class wbr 5123   E cep 5563  Oncon0 6363  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367  df-suc 6369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator