Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onepsuc Structured version   Visualization version   GIF version

Theorem onepsuc 43209
Description: Every ordinal is less than its successor, relationship version. Lemma 1.7 of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
onepsuc (𝐴 ∈ On → 𝐴 E suc 𝐴)

Proof of Theorem onepsuc
StepHypRef Expression
1 sucidg 6471 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 onsuc 7841 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
3 epelg 5600 . . 3 (suc 𝐴 ∈ On → (𝐴 E suc 𝐴𝐴 ∈ suc 𝐴))
42, 3syl 17 . 2 (𝐴 ∈ On → (𝐴 E suc 𝐴𝐴 ∈ suc 𝐴))
51, 4mpbird 257 1 (𝐴 ∈ On → 𝐴 E suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108   class class class wbr 5166   E cep 5598  Oncon0 6390  suc csuc 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-ord 6393  df-on 6394  df-suc 6396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator