Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version |
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6298 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelon 6312 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 Ord word 6287 Oncon0 6288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-tr 5204 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-ord 6291 df-on 6292 |
This theorem is referenced by: oneli 6400 ssorduni 7670 unon 7722 tfindsg2 7754 dfom2 7760 trom 7767 onfununi 8220 onnseq 8223 dfrecs3 8251 dfrecs3OLD 8252 tz7.48-2 8321 tz7.49 8324 oalim 8411 omlim 8412 oelim 8413 oaordi 8426 oalimcl 8440 oaass 8441 omordi 8446 omlimcl 8458 odi 8459 omass 8460 omeulem1 8462 omeulem2 8463 omopth2 8464 oewordri 8472 oeordsuc 8474 oelimcl 8480 oeeui 8482 oaabs2 8528 omabs 8530 omxpenlem 8916 hartogs 9379 card2on 9389 cantnfle 9506 cantnflt 9507 cantnfp1lem3 9515 cantnfp1 9516 oemapvali 9519 cantnflem1b 9521 cantnflem1c 9522 cantnflem1d 9523 cantnflem1 9524 cantnflem2 9525 cantnflem3 9526 cantnflem4 9527 cantnf 9528 cnfcomlem 9534 cnfcom3lem 9538 cnfcom3 9539 r1ordg 9613 r1val3 9673 tskwe 9785 iscard 9810 cardmin2 9834 infxpenlem 9848 infxpenc2lem2 9855 alephordi 9909 alephord2i 9912 alephle 9923 cardaleph 9924 cfub 10084 cfsmolem 10105 zorn2lem5 10335 zorn2lem6 10336 ttukeylem6 10349 ttukeylem7 10350 ondomon 10398 cardmin 10399 alephval2 10407 alephreg 10417 smobeth 10421 winainflem 10528 inar1 10610 inatsk 10613 sltval2 26884 sltres 26890 nosepeq 26913 dfrdg2 33898 naddssim 33960 nosupno 33976 nosupres 33980 nosupbnd1lem1 33981 nosupbnd2lem1 33988 nosupbnd2 33989 noinfno 33991 noinfres 33995 noinfbnd1lem1 33996 noinfbnd2lem1 34003 noinfbnd2 34004 oldlim 34139 oldbday 34151 dfrdg4 34323 ontopbas 34687 onpsstopbas 34689 onint1 34708 oacl2g 41270 ofoafg 41271 ofoaass 41277 omssrncard 41386 |
Copyright terms: Public domain | W3C validator |