| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelon 6356 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: oneli 6448 ssorduni 7755 unon 7806 tfindsg2 7838 dfom2 7844 trom 7851 onfununi 8310 onnseq 8313 dfrecs3 8341 tz7.48-2 8410 tz7.49 8413 oalim 8496 omlim 8497 oelim 8498 oaordi 8510 oalimcl 8524 oaass 8525 omordi 8530 omlimcl 8542 odi 8543 omass 8544 omeulem1 8546 omeulem2 8547 omopth2 8548 oewordri 8556 oeordsuc 8558 oelimcl 8564 oeeui 8566 oaabs2 8613 omabs 8615 naddssim 8649 naddel12 8664 naddsuc2 8665 omxpenlem 9042 hartogs 9497 card2on 9507 cantnfle 9624 cantnflt 9625 cantnfp1lem3 9633 cantnfp1 9634 oemapvali 9637 cantnflem1b 9639 cantnflem1c 9640 cantnflem1d 9641 cantnflem1 9642 cantnflem2 9643 cantnflem3 9644 cantnflem4 9645 cantnf 9646 cnfcomlem 9652 cnfcom3lem 9656 cnfcom3 9657 r1ordg 9731 r1val3 9791 tskwe 9903 iscard 9928 cardmin2 9952 infxpenlem 9966 infxpenc2lem2 9973 alephordi 10027 alephord2i 10030 alephle 10041 cardaleph 10042 cfub 10202 cfsmolem 10223 zorn2lem5 10453 zorn2lem6 10454 ttukeylem6 10467 ttukeylem7 10468 ondomon 10516 cardmin 10517 alephval2 10525 alephreg 10535 smobeth 10539 winainflem 10646 inar1 10728 inatsk 10731 sltval2 27568 sltres 27574 nosepeq 27597 nosupno 27615 nosupres 27619 nosupbnd1lem1 27620 nosupbnd2lem1 27627 nosupbnd2 27628 noinfno 27630 noinfres 27634 noinfbnd1lem1 27635 noinfbnd2lem1 27642 noinfbnd2 27643 oldlim 27798 oldbday 27812 dfrdg2 35783 dfrdg4 35939 ontopbas 36416 onpsstopbas 36418 onint1 36437 onelord 43240 cantnfresb 43313 oawordex2 43315 oacl2g 43319 omabs2 43321 omcl2 43322 tfsconcatfv2 43329 tfsconcatfv 43330 tfsconcatrn 43331 tfsconcat0i 43334 ofoafg 43343 ofoaass 43349 oaun3lem1 43363 oaun3lem2 43364 oadif1lem 43368 oadif1 43369 nadd2rabtr 43373 nadd1suc 43381 naddgeoa 43383 naddwordnexlem0 43385 naddwordnexlem1 43386 naddwordnexlem3 43388 oawordex3 43389 naddwordnexlem4 43390 omssrncard 43529 |
| Copyright terms: Public domain | W3C validator |