![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version |
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6395 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelon 6409 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Ord word 6384 Oncon0 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 |
This theorem is referenced by: oneli 6499 ssorduni 7797 unon 7850 tfindsg2 7882 dfom2 7888 trom 7895 onfununi 8379 onnseq 8382 dfrecs3 8410 dfrecs3OLD 8411 tz7.48-2 8480 tz7.49 8483 oalim 8568 omlim 8569 oelim 8570 oaordi 8582 oalimcl 8596 oaass 8597 omordi 8602 omlimcl 8614 odi 8615 omass 8616 omeulem1 8618 omeulem2 8619 omopth2 8620 oewordri 8628 oeordsuc 8630 oelimcl 8636 oeeui 8638 oaabs2 8685 omabs 8687 naddssim 8721 naddel12 8736 naddsuc2 8737 omxpenlem 9111 hartogs 9581 card2on 9591 cantnfle 9708 cantnflt 9709 cantnfp1lem3 9717 cantnfp1 9718 oemapvali 9721 cantnflem1b 9723 cantnflem1c 9724 cantnflem1d 9725 cantnflem1 9726 cantnflem2 9727 cantnflem3 9728 cantnflem4 9729 cantnf 9730 cnfcomlem 9736 cnfcom3lem 9740 cnfcom3 9741 r1ordg 9815 r1val3 9875 tskwe 9987 iscard 10012 cardmin2 10036 infxpenlem 10050 infxpenc2lem2 10057 alephordi 10111 alephord2i 10114 alephle 10125 cardaleph 10126 cfub 10286 cfsmolem 10307 zorn2lem5 10537 zorn2lem6 10538 ttukeylem6 10551 ttukeylem7 10552 ondomon 10600 cardmin 10601 alephval2 10609 alephreg 10619 smobeth 10623 winainflem 10730 inar1 10812 inatsk 10815 sltval2 27715 sltres 27721 nosepeq 27744 nosupno 27762 nosupres 27766 nosupbnd1lem1 27767 nosupbnd2lem1 27774 nosupbnd2 27775 noinfno 27777 noinfres 27781 noinfbnd1lem1 27782 noinfbnd2lem1 27789 noinfbnd2 27790 oldlim 27939 oldbday 27953 dfrdg2 35776 dfrdg4 35932 ontopbas 36410 onpsstopbas 36412 onint1 36431 onelord 43239 cantnfresb 43313 oawordex2 43315 oacl2g 43319 omabs2 43321 omcl2 43322 tfsconcatfv2 43329 tfsconcatfv 43330 tfsconcatrn 43331 tfsconcat0i 43334 ofoafg 43343 ofoaass 43349 oaun3lem1 43363 oaun3lem2 43364 oadif1lem 43368 oadif1 43369 nadd2rabtr 43373 nadd1suc 43381 naddgeoa 43383 naddwordnexlem0 43385 naddwordnexlem1 43386 naddwordnexlem3 43388 oawordex3 43389 naddwordnexlem4 43390 omssrncard 43529 |
Copyright terms: Public domain | W3C validator |