| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6321 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelon 6335 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: oneli 6426 ssorduni 7719 unon 7770 tfindsg2 7802 dfom2 7808 trom 7815 onfununi 8271 onnseq 8274 dfrecs3 8302 tz7.48-2 8371 tz7.49 8374 oalim 8457 omlim 8458 oelim 8459 oaordi 8471 oalimcl 8485 oaass 8486 omordi 8491 omlimcl 8503 odi 8504 omass 8505 omeulem1 8507 omeulem2 8508 omopth2 8509 oewordri 8517 oeordsuc 8519 oelimcl 8525 oeeui 8527 oaabs2 8574 omabs 8576 naddssim 8610 naddel12 8625 naddsuc2 8626 omxpenlem 9002 hartogs 9455 card2on 9465 cantnfle 9586 cantnflt 9587 cantnfp1lem3 9595 cantnfp1 9596 oemapvali 9599 cantnflem1b 9601 cantnflem1c 9602 cantnflem1d 9603 cantnflem1 9604 cantnflem2 9605 cantnflem3 9606 cantnflem4 9607 cantnf 9608 cnfcomlem 9614 cnfcom3lem 9618 cnfcom3 9619 r1ordg 9693 r1val3 9753 tskwe 9865 iscard 9890 cardmin2 9914 infxpenlem 9926 infxpenc2lem2 9933 alephordi 9987 alephord2i 9990 alephle 10001 cardaleph 10002 cfub 10162 cfsmolem 10183 zorn2lem5 10413 zorn2lem6 10414 ttukeylem6 10427 ttukeylem7 10428 ondomon 10476 cardmin 10477 alephval2 10485 alephreg 10495 smobeth 10499 winainflem 10606 inar1 10688 inatsk 10691 sltval2 27584 sltres 27590 nosepeq 27613 nosupno 27631 nosupres 27635 nosupbnd1lem1 27636 nosupbnd2lem1 27643 nosupbnd2 27644 noinfno 27646 noinfres 27650 noinfbnd1lem1 27651 noinfbnd2lem1 27658 noinfbnd2 27659 oldlim 27819 oldbday 27833 dfrdg2 35768 dfrdg4 35924 ontopbas 36401 onpsstopbas 36403 onint1 36422 onelord 43224 cantnfresb 43297 oawordex2 43299 oacl2g 43303 omabs2 43305 omcl2 43306 tfsconcatfv2 43313 tfsconcatfv 43314 tfsconcatrn 43315 tfsconcat0i 43318 ofoafg 43327 ofoaass 43333 oaun3lem1 43347 oaun3lem2 43348 oadif1lem 43352 oadif1 43353 nadd2rabtr 43357 nadd1suc 43365 naddgeoa 43367 naddwordnexlem0 43369 naddwordnexlem1 43370 naddwordnexlem3 43372 oawordex3 43373 naddwordnexlem4 43374 omssrncard 43513 |
| Copyright terms: Public domain | W3C validator |