Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version |
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelon 6275 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: oneli 6359 ssorduni 7606 unon 7653 tfindsg2 7683 dfom2 7689 trom 7696 onfununi 8143 onnseq 8146 dfrecs3 8174 dfrecs3OLD 8175 tz7.48-2 8243 tz7.49 8246 oalim 8324 omlim 8325 oelim 8326 oaordi 8339 oalimcl 8353 oaass 8354 omordi 8359 omlimcl 8371 odi 8372 omass 8373 omeulem1 8375 omeulem2 8376 omopth2 8377 oewordri 8385 oeordsuc 8387 oelimcl 8393 oeeui 8395 oaabs2 8439 omabs 8441 omxpenlem 8813 hartogs 9233 card2on 9243 cantnfle 9359 cantnflt 9360 cantnfp1lem3 9368 cantnfp1 9369 oemapvali 9372 cantnflem1b 9374 cantnflem1c 9375 cantnflem1d 9376 cantnflem1 9377 cantnflem2 9378 cantnflem3 9379 cantnflem4 9380 cantnf 9381 cnfcomlem 9387 cnfcom3lem 9391 cnfcom3 9392 r1ordg 9467 r1val3 9527 tskwe 9639 iscard 9664 cardmin2 9688 infxpenlem 9700 infxpenc2lem2 9707 alephordi 9761 alephord2i 9764 alephle 9775 cardaleph 9776 cfub 9936 cfsmolem 9957 zorn2lem5 10187 zorn2lem6 10188 ttukeylem6 10201 ttukeylem7 10202 ondomon 10250 cardmin 10251 alephval2 10259 alephreg 10269 smobeth 10273 winainflem 10380 inar1 10462 inatsk 10465 dfrdg2 33677 naddssim 33764 sltval2 33786 sltres 33792 nosepeq 33815 nosupno 33833 nosupres 33837 nosupbnd1lem1 33838 nosupbnd2lem1 33845 nosupbnd2 33846 noinfno 33848 noinfres 33852 noinfbnd1lem1 33853 noinfbnd2lem1 33860 noinfbnd2 33861 oldlim 33996 oldbday 34008 dfrdg4 34180 ontopbas 34544 onpsstopbas 34546 onint1 34565 |
Copyright terms: Public domain | W3C validator |