| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6362 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelon 6376 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: oneli 6467 ssorduni 7771 unon 7823 tfindsg2 7855 dfom2 7861 trom 7868 onfununi 8353 onnseq 8356 dfrecs3 8384 dfrecs3OLD 8385 tz7.48-2 8454 tz7.49 8457 oalim 8542 omlim 8543 oelim 8544 oaordi 8556 oalimcl 8570 oaass 8571 omordi 8576 omlimcl 8588 odi 8589 omass 8590 omeulem1 8592 omeulem2 8593 omopth2 8594 oewordri 8602 oeordsuc 8604 oelimcl 8610 oeeui 8612 oaabs2 8659 omabs 8661 naddssim 8695 naddel12 8710 naddsuc2 8711 omxpenlem 9085 hartogs 9556 card2on 9566 cantnfle 9683 cantnflt 9684 cantnfp1lem3 9692 cantnfp1 9693 oemapvali 9696 cantnflem1b 9698 cantnflem1c 9699 cantnflem1d 9700 cantnflem1 9701 cantnflem2 9702 cantnflem3 9703 cantnflem4 9704 cantnf 9705 cnfcomlem 9711 cnfcom3lem 9715 cnfcom3 9716 r1ordg 9790 r1val3 9850 tskwe 9962 iscard 9987 cardmin2 10011 infxpenlem 10025 infxpenc2lem2 10032 alephordi 10086 alephord2i 10089 alephle 10100 cardaleph 10101 cfub 10261 cfsmolem 10282 zorn2lem5 10512 zorn2lem6 10513 ttukeylem6 10526 ttukeylem7 10527 ondomon 10575 cardmin 10576 alephval2 10584 alephreg 10594 smobeth 10598 winainflem 10705 inar1 10787 inatsk 10790 sltval2 27618 sltres 27624 nosepeq 27647 nosupno 27665 nosupres 27669 nosupbnd1lem1 27670 nosupbnd2lem1 27677 nosupbnd2 27678 noinfno 27680 noinfres 27684 noinfbnd1lem1 27685 noinfbnd2lem1 27692 noinfbnd2 27693 oldlim 27842 oldbday 27856 dfrdg2 35759 dfrdg4 35915 ontopbas 36392 onpsstopbas 36394 onint1 36413 onelord 43222 cantnfresb 43295 oawordex2 43297 oacl2g 43301 omabs2 43303 omcl2 43304 tfsconcatfv2 43311 tfsconcatfv 43312 tfsconcatrn 43313 tfsconcat0i 43316 ofoafg 43325 ofoaass 43331 oaun3lem1 43345 oaun3lem2 43346 oadif1lem 43350 oadif1 43351 nadd2rabtr 43355 nadd1suc 43363 naddgeoa 43365 naddwordnexlem0 43367 naddwordnexlem1 43368 naddwordnexlem3 43370 oawordex3 43371 naddwordnexlem4 43372 omssrncard 43511 |
| Copyright terms: Public domain | W3C validator |