Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version |
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6276 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelon 6290 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: oneli 6374 ssorduni 7629 unon 7678 tfindsg2 7708 dfom2 7714 trom 7721 onfununi 8172 onnseq 8175 dfrecs3 8203 dfrecs3OLD 8204 tz7.48-2 8273 tz7.49 8276 oalim 8362 omlim 8363 oelim 8364 oaordi 8377 oalimcl 8391 oaass 8392 omordi 8397 omlimcl 8409 odi 8410 omass 8411 omeulem1 8413 omeulem2 8414 omopth2 8415 oewordri 8423 oeordsuc 8425 oelimcl 8431 oeeui 8433 oaabs2 8479 omabs 8481 omxpenlem 8860 hartogs 9303 card2on 9313 cantnfle 9429 cantnflt 9430 cantnfp1lem3 9438 cantnfp1 9439 oemapvali 9442 cantnflem1b 9444 cantnflem1c 9445 cantnflem1d 9446 cantnflem1 9447 cantnflem2 9448 cantnflem3 9449 cantnflem4 9450 cantnf 9451 cnfcomlem 9457 cnfcom3lem 9461 cnfcom3 9462 r1ordg 9536 r1val3 9596 tskwe 9708 iscard 9733 cardmin2 9757 infxpenlem 9769 infxpenc2lem2 9776 alephordi 9830 alephord2i 9833 alephle 9844 cardaleph 9845 cfub 10005 cfsmolem 10026 zorn2lem5 10256 zorn2lem6 10257 ttukeylem6 10270 ttukeylem7 10271 ondomon 10319 cardmin 10320 alephval2 10328 alephreg 10338 smobeth 10342 winainflem 10449 inar1 10531 inatsk 10534 dfrdg2 33771 naddssim 33837 sltval2 33859 sltres 33865 nosepeq 33888 nosupno 33906 nosupres 33910 nosupbnd1lem1 33911 nosupbnd2lem1 33918 nosupbnd2 33919 noinfno 33921 noinfres 33925 noinfbnd1lem1 33926 noinfbnd2lem1 33933 noinfbnd2 33934 oldlim 34069 oldbday 34081 dfrdg4 34253 ontopbas 34617 onpsstopbas 34619 onint1 34638 omssrncard 41147 |
Copyright terms: Public domain | W3C validator |