| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6345 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelon 6359 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: oneli 6451 ssorduni 7758 unon 7809 tfindsg2 7841 dfom2 7847 trom 7854 onfununi 8313 onnseq 8316 dfrecs3 8344 tz7.48-2 8413 tz7.49 8416 oalim 8499 omlim 8500 oelim 8501 oaordi 8513 oalimcl 8527 oaass 8528 omordi 8533 omlimcl 8545 odi 8546 omass 8547 omeulem1 8549 omeulem2 8550 omopth2 8551 oewordri 8559 oeordsuc 8561 oelimcl 8567 oeeui 8569 oaabs2 8616 omabs 8618 naddssim 8652 naddel12 8667 naddsuc2 8668 omxpenlem 9047 hartogs 9504 card2on 9514 cantnfle 9631 cantnflt 9632 cantnfp1lem3 9640 cantnfp1 9641 oemapvali 9644 cantnflem1b 9646 cantnflem1c 9647 cantnflem1d 9648 cantnflem1 9649 cantnflem2 9650 cantnflem3 9651 cantnflem4 9652 cantnf 9653 cnfcomlem 9659 cnfcom3lem 9663 cnfcom3 9664 r1ordg 9738 r1val3 9798 tskwe 9910 iscard 9935 cardmin2 9959 infxpenlem 9973 infxpenc2lem2 9980 alephordi 10034 alephord2i 10037 alephle 10048 cardaleph 10049 cfub 10209 cfsmolem 10230 zorn2lem5 10460 zorn2lem6 10461 ttukeylem6 10474 ttukeylem7 10475 ondomon 10523 cardmin 10524 alephval2 10532 alephreg 10542 smobeth 10546 winainflem 10653 inar1 10735 inatsk 10738 sltval2 27575 sltres 27581 nosepeq 27604 nosupno 27622 nosupres 27626 nosupbnd1lem1 27627 nosupbnd2lem1 27634 nosupbnd2 27635 noinfno 27637 noinfres 27641 noinfbnd1lem1 27642 noinfbnd2lem1 27649 noinfbnd2 27650 oldlim 27805 oldbday 27819 dfrdg2 35790 dfrdg4 35946 ontopbas 36423 onpsstopbas 36425 onint1 36444 onelord 43247 cantnfresb 43320 oawordex2 43322 oacl2g 43326 omabs2 43328 omcl2 43329 tfsconcatfv2 43336 tfsconcatfv 43337 tfsconcatrn 43338 tfsconcat0i 43341 ofoafg 43350 ofoaass 43356 oaun3lem1 43370 oaun3lem2 43371 oadif1lem 43375 oadif1 43376 nadd2rabtr 43380 nadd1suc 43388 naddgeoa 43390 naddwordnexlem0 43392 naddwordnexlem1 43393 naddwordnexlem3 43395 oawordex3 43396 naddwordnexlem4 43397 omssrncard 43536 |
| Copyright terms: Public domain | W3C validator |