Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version |
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6223 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelon 6237 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | 1, 2 | sylan 583 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 Ord word 6212 Oncon0 6213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 |
This theorem is referenced by: oneli 6321 ssorduni 7563 unon 7610 tfindsg2 7640 dfom2 7646 trom 7653 onfununi 8078 onnseq 8081 dfrecs3 8109 tz7.48-2 8178 tz7.49 8181 oalim 8259 omlim 8260 oelim 8261 oaordi 8274 oalimcl 8288 oaass 8289 omordi 8294 omlimcl 8306 odi 8307 omass 8308 omeulem1 8310 omeulem2 8311 omopth2 8312 oewordri 8320 oeordsuc 8322 oelimcl 8328 oeeui 8330 oaabs2 8374 omabs 8376 omxpenlem 8746 hartogs 9160 card2on 9170 cantnfle 9286 cantnflt 9287 cantnfp1lem3 9295 cantnfp1 9296 oemapvali 9299 cantnflem1b 9301 cantnflem1c 9302 cantnflem1d 9303 cantnflem1 9304 cantnflem2 9305 cantnflem3 9306 cantnflem4 9307 cantnf 9308 cnfcomlem 9314 cnfcom3lem 9318 cnfcom3 9319 r1ordg 9394 r1val3 9454 tskwe 9566 iscard 9591 cardmin2 9615 infxpenlem 9627 infxpenc2lem2 9634 alephordi 9688 alephord2i 9691 alephle 9702 cardaleph 9703 cfub 9863 cfsmolem 9884 zorn2lem5 10114 zorn2lem6 10115 ttukeylem6 10128 ttukeylem7 10129 ondomon 10177 cardmin 10178 alephval2 10186 alephreg 10196 smobeth 10200 winainflem 10307 inar1 10389 inatsk 10392 dfrdg2 33490 naddssim 33574 sltval2 33596 sltres 33602 nosepeq 33625 nosupno 33643 nosupres 33647 nosupbnd1lem1 33648 nosupbnd2lem1 33655 nosupbnd2 33656 noinfno 33658 noinfres 33662 noinfbnd1lem1 33663 noinfbnd2lem1 33670 noinfbnd2 33671 oldlim 33806 oldbday 33818 dfrdg4 33990 ontopbas 34354 onpsstopbas 34356 onint1 34375 |
Copyright terms: Public domain | W3C validator |