| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onn0 | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
| Ref | Expression |
|---|---|
| onn0 | ⊢ On ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6390 | . 2 ⊢ ∅ ∈ On | |
| 2 | 1 | ne0ii 4310 | 1 ⊢ On ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2926 ∅c0 4299 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-tr 5218 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: limon 7814 |
| Copyright terms: Public domain | W3C validator |