![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onn0 | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
Ref | Expression |
---|---|
onn0 | ⊢ On ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6449 | . 2 ⊢ ∅ ∈ On | |
2 | 1 | ne0ii 4367 | 1 ⊢ On ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 ∅c0 4352 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: limon 7872 |
Copyright terms: Public domain | W3C validator |