| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onn0 | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
| Ref | Expression |
|---|---|
| onn0 | ⊢ On ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6361 | . 2 ⊢ ∅ ∈ On | |
| 2 | 1 | ne0ii 4294 | 1 ⊢ On ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∅c0 4283 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-tr 5199 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: limon 7766 |
| Copyright terms: Public domain | W3C validator |