| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version | ||
| Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| Ref | Expression |
|---|---|
| limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6374 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 2 | elong 6321 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Ord word 6312 Oncon0 6313 Lim wlim 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-uni 4861 df-tr 5203 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6316 df-on 6317 df-lim 6318 |
| This theorem is referenced by: onzsl 7784 limuni3 7790 tfindsg2 7800 dfom2 7806 rdglim 8353 oalim 8455 omlim 8456 oelim 8457 oalimcl 8483 oaass 8484 omlimcl 8501 odi 8502 omass 8503 oen0 8509 oewordri 8515 oelim2 8518 oelimcl 8523 omabs 8574 r1lim 9674 alephordi 9974 cflm 10150 alephsing 10176 pwcfsdom 10483 winafp 10597 r1limwun 10636 omlimcl2 43362 oeord2lim 43429 |
| Copyright terms: Public domain | W3C validator |