![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version |
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
Ref | Expression |
---|---|
limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6455 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
2 | elong 6403 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Ord word 6394 Oncon0 6395 Lim wlim 6396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 |
This theorem is referenced by: onzsl 7883 limuni3 7889 tfindsg2 7899 dfom2 7905 rdglim 8482 oalim 8588 omlim 8589 oelim 8590 oalimcl 8616 oaass 8617 omlimcl 8634 odi 8635 omass 8636 oen0 8642 oewordri 8648 oelim2 8651 oelimcl 8656 omabs 8707 r1lim 9841 alephordi 10143 cflm 10319 alephsing 10345 pwcfsdom 10652 winafp 10766 r1limwun 10805 omlimcl2 43203 oeord2lim 43271 |
Copyright terms: Public domain | W3C validator |