| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version | ||
| Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| Ref | Expression |
|---|---|
| limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6372 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 2 | elong 6319 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6310 Oncon0 6311 Lim wlim 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-ss 3922 df-uni 4862 df-tr 5203 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 |
| This theorem is referenced by: onzsl 7786 limuni3 7792 tfindsg2 7802 dfom2 7808 rdglim 8355 oalim 8457 omlim 8458 oelim 8459 oalimcl 8485 oaass 8486 omlimcl 8503 odi 8504 omass 8505 oen0 8511 oewordri 8517 oelim2 8520 oelimcl 8525 omabs 8576 r1lim 9687 alephordi 9987 cflm 10163 alephsing 10189 pwcfsdom 10496 winafp 10610 r1limwun 10649 omlimcl2 43218 oeord2lim 43285 |
| Copyright terms: Public domain | W3C validator |