| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version | ||
| Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| Ref | Expression |
|---|---|
| limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6367 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 2 | elong 6314 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Ord word 6305 Oncon0 6306 Lim wlim 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3919 df-uni 4860 df-tr 5199 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-lim 6311 |
| This theorem is referenced by: onzsl 7776 limuni3 7782 tfindsg2 7792 dfom2 7798 rdglim 8345 oalim 8447 omlim 8448 oelim 8449 oalimcl 8475 oaass 8476 omlimcl 8493 odi 8494 omass 8495 oen0 8501 oewordri 8507 oelim2 8510 oelimcl 8515 omabs 8566 r1lim 9665 alephordi 9965 cflm 10141 alephsing 10167 pwcfsdom 10474 winafp 10588 r1limwun 10627 omlimcl2 43281 oeord2lim 43348 |
| Copyright terms: Public domain | W3C validator |