| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version | ||
| Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| Ref | Expression |
|---|---|
| limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6393 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 2 | elong 6340 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6331 Oncon0 6332 Lim wlim 6333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 |
| This theorem is referenced by: onzsl 7822 limuni3 7828 tfindsg2 7838 dfom2 7844 rdglim 8394 oalim 8496 omlim 8497 oelim 8498 oalimcl 8524 oaass 8525 omlimcl 8542 odi 8543 omass 8544 oen0 8550 oewordri 8556 oelim2 8559 oelimcl 8564 omabs 8615 r1lim 9725 alephordi 10027 cflm 10203 alephsing 10229 pwcfsdom 10536 winafp 10650 r1limwun 10689 omlimcl2 43231 oeord2lim 43298 |
| Copyright terms: Public domain | W3C validator |