| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version | ||
| Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| Ref | Expression |
|---|---|
| limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6396 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 2 | elong 6343 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6334 Oncon0 6335 Lim wlim 6336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 |
| This theorem is referenced by: onzsl 7825 limuni3 7831 tfindsg2 7841 dfom2 7847 rdglim 8397 oalim 8499 omlim 8500 oelim 8501 oalimcl 8527 oaass 8528 omlimcl 8545 odi 8546 omass 8547 oen0 8553 oewordri 8559 oelim2 8562 oelimcl 8567 omabs 8618 r1lim 9732 alephordi 10034 cflm 10210 alephsing 10236 pwcfsdom 10543 winafp 10657 r1limwun 10696 omlimcl2 43238 oeord2lim 43305 |
| Copyright terms: Public domain | W3C validator |