Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version |
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
Ref | Expression |
---|---|
limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6272 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
2 | elong 6221 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | syl5ibr 249 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
4 | 3 | imp 410 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 Ord word 6212 Oncon0 6213 Lim wlim 6214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-v 3410 df-in 3873 df-ss 3883 df-uni 4820 df-tr 5162 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 df-lim 6218 |
This theorem is referenced by: onzsl 7625 limuni3 7631 tfindsg2 7640 dfom2 7646 rdglim 8162 oalim 8259 omlim 8260 oelim 8261 oalimcl 8288 oaass 8289 omlimcl 8306 odi 8307 omass 8308 oen0 8314 oewordri 8320 oelim2 8323 oelimcl 8328 omabs 8376 r1lim 9388 alephordi 9688 cflm 9864 alephsing 9890 pwcfsdom 10197 winafp 10311 r1limwun 10350 |
Copyright terms: Public domain | W3C validator |