| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version | ||
| Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| Ref | Expression |
|---|---|
| limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6418 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 2 | elong 6365 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6356 Oncon0 6357 Lim wlim 6358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-ss 3948 df-uni 4889 df-tr 5235 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 |
| This theorem is referenced by: onzsl 7846 limuni3 7852 tfindsg2 7862 dfom2 7868 rdglim 8445 oalim 8549 omlim 8550 oelim 8551 oalimcl 8577 oaass 8578 omlimcl 8595 odi 8596 omass 8597 oen0 8603 oewordri 8609 oelim2 8612 oelimcl 8617 omabs 8668 r1lim 9791 alephordi 10093 cflm 10269 alephsing 10295 pwcfsdom 10602 winafp 10716 r1limwun 10755 omlimcl2 43233 oeord2lim 43300 |
| Copyright terms: Public domain | W3C validator |