MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limelon Structured version   Visualization version   GIF version

Theorem limelon 6450
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
limelon ((𝐴𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On)

Proof of Theorem limelon
StepHypRef Expression
1 limord 6446 . . 3 (Lim 𝐴 → Ord 𝐴)
2 elong 6394 . . 3 (𝐴𝐵 → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2imbitrrid 246 . 2 (𝐴𝐵 → (Lim 𝐴𝐴 ∈ On))
43imp 406 1 ((𝐴𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  Ord word 6385  Oncon0 6386  Lim wlim 6387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-v 3480  df-ss 3980  df-uni 4913  df-tr 5266  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-lim 6391
This theorem is referenced by:  onzsl  7867  limuni3  7873  tfindsg2  7883  dfom2  7889  rdglim  8465  oalim  8569  omlim  8570  oelim  8571  oalimcl  8597  oaass  8598  omlimcl  8615  odi  8616  omass  8617  oen0  8623  oewordri  8629  oelim2  8632  oelimcl  8637  omabs  8688  r1lim  9810  alephordi  10112  cflm  10288  alephsing  10314  pwcfsdom  10621  winafp  10735  r1limwun  10774  omlimcl2  43231  oeord2lim  43299
  Copyright terms: Public domain W3C validator