Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version |
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
Ref | Expression |
---|---|
limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6325 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
2 | elong 6274 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | syl5ibr 245 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Ord word 6265 Oncon0 6266 Lim wlim 6267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 |
This theorem is referenced by: onzsl 7693 limuni3 7699 tfindsg2 7708 dfom2 7714 rdglim 8257 oalim 8362 omlim 8363 oelim 8364 oalimcl 8391 oaass 8392 omlimcl 8409 odi 8410 omass 8411 oen0 8417 oewordri 8423 oelim2 8426 oelimcl 8431 omabs 8481 r1lim 9530 alephordi 9830 cflm 10006 alephsing 10032 pwcfsdom 10339 winafp 10453 r1limwun 10492 |
Copyright terms: Public domain | W3C validator |