Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version |
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
Ref | Expression |
---|---|
limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6310 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
2 | elong 6259 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | syl5ibr 245 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Ord word 6250 Oncon0 6251 Lim wlim 6252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 |
This theorem is referenced by: onzsl 7668 limuni3 7674 tfindsg2 7683 dfom2 7689 rdglim 8228 oalim 8324 omlim 8325 oelim 8326 oalimcl 8353 oaass 8354 omlimcl 8371 odi 8372 omass 8373 oen0 8379 oewordri 8385 oelim2 8388 oelimcl 8393 omabs 8441 r1lim 9461 alephordi 9761 cflm 9937 alephsing 9963 pwcfsdom 10270 winafp 10384 r1limwun 10423 |
Copyright terms: Public domain | W3C validator |