![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 6448 | . 2 ⊢ Ord ∅ | |
2 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 6404 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4352 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: inton 6453 onn0 6460 on0eqel 6519 orduninsuc 7880 onzsl 7883 peano1 7927 smofvon2 8412 tfrlem16 8449 rdg0n 8490 1on 8534 1onOLD 8535 ordgt0ge1 8549 oa0 8572 om0 8573 oe0m 8574 oe0m0 8576 oe0 8578 oesuclem 8581 omcl 8592 oecl 8593 oa0r 8594 om0r 8595 oaord1 8607 oaword1 8608 oaword2 8609 oawordeu 8611 oa00 8615 odi 8635 oeoa 8653 oeoe 8655 nna0r 8665 nnm0r 8666 naddrid 8739 naddlid 8740 naddword1 8747 card2on 9623 card2inf 9624 harcl 9628 cantnfvalf 9734 rankon 9864 cardon 10013 card0 10027 alephon 10138 alephgeom 10151 alephfplem1 10173 djufi 10256 ttukeylem4 10581 ttukeylem7 10584 cfpwsdom 10653 inar1 10844 rankcf 10846 gruina 10887 sltval2 27719 sltsolem1 27738 nosepnelem 27742 nodense 27755 nolt02o 27758 bdayelon 27839 cuteq1 27896 old0 27916 made0 27930 old1 27932 mulsproplem2 28161 mulsproplem3 28162 mulsproplem4 28163 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 mulsproplem12 28171 mulsproplem13 28172 mulsproplem14 28173 precsexlem1 28249 precsexlem2 28250 bnj168 34706 rdgprc0 35757 rankeq1o 36135 0hf 36141 onsucconn 36404 onsucsuccmp 36410 finxp1o 37358 finxpreclem4 37360 harn0 43059 onexoegt 43205 ordeldif1o 43222 oe0suclim 43239 oaordnr 43258 nnoeomeqom 43274 oenass 43281 omabs2 43294 omcl3g 43296 naddcnff 43324 nadd2rabex 43348 safesnsupfiss 43377 safesnsupfidom1o 43379 safesnsupfilb 43380 0no 43397 nlim1NEW 43404 aleph1min 43519 |
Copyright terms: Public domain | W3C validator |