| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon | ⊢ ∅ ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6360 | . 2 ⊢ Ord ∅ | |
| 2 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elon 6315 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∅c0 4283 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-tr 5199 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: inton 6365 onn0 6372 on0eqel 6431 orduninsuc 7773 onzsl 7776 peano1 7819 smofvon2 8276 tfrlem16 8312 rdg0n 8353 1on 8397 ordgt0ge1 8408 oa0 8431 om0 8432 oe0m 8433 oe0m0 8435 oe0 8437 oesuclem 8440 omcl 8451 oecl 8452 oa0r 8453 om0r 8454 oaord1 8466 oaword1 8467 oaword2 8468 oawordeu 8470 oa00 8474 odi 8494 oeoa 8512 oeoe 8514 nna0r 8524 nnm0r 8525 naddrid 8598 naddlid 8599 naddword1 8606 card2on 9440 card2inf 9441 harcl 9445 cantnfvalf 9555 rankon 9688 cardon 9837 card0 9851 alephon 9960 alephgeom 9973 alephfplem1 9995 djufi 10078 ttukeylem4 10403 ttukeylem7 10406 cfpwsdom 10475 inar1 10666 rankcf 10668 gruina 10709 sltval2 27596 sltsolem1 27615 nosepnelem 27619 nodense 27632 nolt02o 27635 bdayelon 27716 cuteq1 27779 old0 27801 made0 27819 old1 27821 mulsproplem2 28057 mulsproplem3 28058 mulsproplem4 28059 mulsproplem5 28060 mulsproplem6 28061 mulsproplem7 28062 mulsproplem8 28063 mulsproplem12 28067 mulsproplem13 28068 mulsproplem14 28069 precsexlem1 28146 precsexlem2 28147 bnj168 34740 r1wf 35105 fineqvnttrclse 35142 rdgprc0 35833 rankeq1o 36211 0hf 36217 onsucconn 36478 onsucsuccmp 36484 finxp1o 37432 finxpreclem4 37434 harn0 43141 onexoegt 43283 ordeldif1o 43299 oe0suclim 43316 oaordnr 43335 nnoeomeqom 43351 oenass 43358 omabs2 43371 omcl3g 43373 naddcnff 43401 nadd2rabex 43425 safesnsupfiss 43454 safesnsupfidom1o 43456 safesnsupfilb 43457 0no 43474 nlim1NEW 43481 aleph1min 43596 wfaxrep 45033 wfaxnul 45035 |
| Copyright terms: Public domain | W3C validator |