| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon | ⊢ ∅ ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6389 | . 2 ⊢ Ord ∅ | |
| 2 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elon 6344 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4299 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-tr 5218 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: inton 6394 onn0 6401 on0eqel 6461 orduninsuc 7822 onzsl 7825 peano1 7868 smofvon2 8328 tfrlem16 8364 rdg0n 8405 1on 8449 ordgt0ge1 8460 oa0 8483 om0 8484 oe0m 8485 oe0m0 8487 oe0 8489 oesuclem 8492 omcl 8503 oecl 8504 oa0r 8505 om0r 8506 oaord1 8518 oaword1 8519 oaword2 8520 oawordeu 8522 oa00 8526 odi 8546 oeoa 8564 oeoe 8566 nna0r 8576 nnm0r 8577 naddrid 8650 naddlid 8651 naddword1 8658 card2on 9514 card2inf 9515 harcl 9519 cantnfvalf 9625 rankon 9755 cardon 9904 card0 9918 alephon 10029 alephgeom 10042 alephfplem1 10064 djufi 10147 ttukeylem4 10472 ttukeylem7 10475 cfpwsdom 10544 inar1 10735 rankcf 10737 gruina 10778 sltval2 27575 sltsolem1 27594 nosepnelem 27598 nodense 27611 nolt02o 27614 bdayelon 27695 cuteq1 27753 old0 27774 made0 27792 old1 27794 mulsproplem2 28027 mulsproplem3 28028 mulsproplem4 28029 mulsproplem5 28030 mulsproplem6 28031 mulsproplem7 28032 mulsproplem8 28033 mulsproplem12 28037 mulsproplem13 28038 mulsproplem14 28039 precsexlem1 28116 precsexlem2 28117 bnj168 34727 rdgprc0 35788 rankeq1o 36166 0hf 36172 onsucconn 36433 onsucsuccmp 36439 finxp1o 37387 finxpreclem4 37389 harn0 43098 onexoegt 43240 ordeldif1o 43256 oe0suclim 43273 oaordnr 43292 nnoeomeqom 43308 oenass 43315 omabs2 43328 omcl3g 43330 naddcnff 43358 nadd2rabex 43382 safesnsupfiss 43411 safesnsupfidom1o 43413 safesnsupfilb 43414 0no 43431 nlim1NEW 43438 aleph1min 43553 wfaxrep 44991 wfaxnul 44993 |
| Copyright terms: Public domain | W3C validator |