Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 6318 | . 2 ⊢ Ord ∅ | |
2 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 6275 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 230 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∅c0 4256 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-tr 5192 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: inton 6323 onn0 6330 on0eqel 6384 orduninsuc 7690 onzsl 7693 peano1 7735 smofvon2 8187 tfrlem16 8224 rdg0n 8265 1on 8309 1onOLD 8310 ordgt0ge1 8323 oa0 8346 om0 8347 oe0m 8348 oe0m0 8350 oe0 8352 oesuclem 8355 omcl 8366 oecl 8367 oa0r 8368 om0r 8369 oaord1 8382 oaword1 8383 oaword2 8384 oawordeu 8386 oa00 8390 odi 8410 oeoa 8428 oeoe 8430 nna0r 8440 nnm0r 8441 card2on 9313 card2inf 9314 harcl 9318 cantnfvalf 9423 rankon 9553 cardon 9702 card0 9716 alephon 9825 alephgeom 9838 alephfplem1 9860 djufi 9942 ttukeylem4 10268 ttukeylem7 10271 cfpwsdom 10340 inar1 10531 rankcf 10533 gruina 10574 bnj168 32709 rdgprc0 33769 naddid1 33836 sltval2 33859 sltsolem1 33878 nosepnelem 33882 nodense 33895 nolt02o 33898 bdayelon 33971 old0 34043 made0 34057 rankeq1o 34473 0hf 34479 onsucconn 34627 onsucsuccmp 34633 finxp1o 35563 finxpreclem4 35565 harn0 40927 nlim1NEW 41049 aleph1min 41164 |
Copyright terms: Public domain | W3C validator |