![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 6439 | . 2 ⊢ Ord ∅ | |
2 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 6395 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∅c0 4339 Ord word 6385 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-tr 5266 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: inton 6444 onn0 6451 on0eqel 6510 orduninsuc 7864 onzsl 7867 peano1 7911 smofvon2 8395 tfrlem16 8432 rdg0n 8473 1on 8517 1onOLD 8518 ordgt0ge1 8530 oa0 8553 om0 8554 oe0m 8555 oe0m0 8557 oe0 8559 oesuclem 8562 omcl 8573 oecl 8574 oa0r 8575 om0r 8576 oaord1 8588 oaword1 8589 oaword2 8590 oawordeu 8592 oa00 8596 odi 8616 oeoa 8634 oeoe 8636 nna0r 8646 nnm0r 8647 naddrid 8720 naddlid 8721 naddword1 8728 card2on 9592 card2inf 9593 harcl 9597 cantnfvalf 9703 rankon 9833 cardon 9982 card0 9996 alephon 10107 alephgeom 10120 alephfplem1 10142 djufi 10225 ttukeylem4 10550 ttukeylem7 10553 cfpwsdom 10622 inar1 10813 rankcf 10815 gruina 10856 sltval2 27716 sltsolem1 27735 nosepnelem 27739 nodense 27752 nolt02o 27755 bdayelon 27836 cuteq1 27893 old0 27913 made0 27927 old1 27929 mulsproplem2 28158 mulsproplem3 28159 mulsproplem4 28160 mulsproplem5 28161 mulsproplem6 28162 mulsproplem7 28163 mulsproplem8 28164 mulsproplem12 28168 mulsproplem13 28169 mulsproplem14 28170 precsexlem1 28246 precsexlem2 28247 bnj168 34723 rdgprc0 35775 rankeq1o 36153 0hf 36159 onsucconn 36421 onsucsuccmp 36427 finxp1o 37375 finxpreclem4 37377 harn0 43091 onexoegt 43233 ordeldif1o 43250 oe0suclim 43267 oaordnr 43286 nnoeomeqom 43302 oenass 43309 omabs2 43322 omcl3g 43324 naddcnff 43352 nadd2rabex 43376 safesnsupfiss 43405 safesnsupfidom1o 43407 safesnsupfilb 43408 0no 43425 nlim1NEW 43432 aleph1min 43547 wfaxrep 44950 |
Copyright terms: Public domain | W3C validator |