![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 6118 | . 2 ⊢ Ord ∅ | |
2 | 0ex 5102 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 6075 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 232 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2081 ∅c0 4211 Ord word 6065 Oncon0 6066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-nul 5101 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-in 3866 df-ss 3874 df-nul 4212 df-pw 4455 df-uni 4746 df-tr 5064 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-ord 6069 df-on 6070 |
This theorem is referenced by: inton 6123 onn0 6130 on0eqel 6183 orduninsuc 7414 onzsl 7417 smofvon2 7845 tfrlem16 7881 1on 7960 ordgt0ge1 7973 oa0 7992 om0 7993 oe0m 7994 oe0m0 7996 oe0 7998 oesuclem 8001 omcl 8012 oecl 8013 oa0r 8014 om0r 8015 oaord1 8027 oaword1 8028 oaword2 8029 oawordeu 8031 oa00 8035 odi 8055 oeoa 8073 oeoe 8075 nna0r 8085 nnm0r 8086 card2on 8864 card2inf 8865 harcl 8871 cantnfvalf 8974 rankon 9070 cardon 9219 card0 9233 alephon 9341 alephgeom 9354 alephfplem1 9376 djufi 9458 ttukeylem4 9780 ttukeylem7 9783 cfpwsdom 9852 inar1 10043 rankcf 10045 gruina 10086 bnj168 31617 rdgprc0 32647 sltval2 32772 sltsolem1 32789 nosepnelem 32793 nodense 32805 nolt02o 32808 bdayelon 32855 rankeq1o 33241 0hf 33247 onsucconn 33395 onsucsuccmp 33401 finxp1o 34204 finxpreclem4 34206 harn0 39187 aleph1min 39401 |
Copyright terms: Public domain | W3C validator |