| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon | ⊢ ∅ ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6365 | . 2 ⊢ Ord ∅ | |
| 2 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elon 6320 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4286 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-tr 5203 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: inton 6370 onn0 6377 on0eqel 6436 orduninsuc 7783 onzsl 7786 peano1 7829 smofvon2 8286 tfrlem16 8322 rdg0n 8363 1on 8407 ordgt0ge1 8418 oa0 8441 om0 8442 oe0m 8443 oe0m0 8445 oe0 8447 oesuclem 8450 omcl 8461 oecl 8462 oa0r 8463 om0r 8464 oaord1 8476 oaword1 8477 oaword2 8478 oawordeu 8480 oa00 8484 odi 8504 oeoa 8522 oeoe 8524 nna0r 8534 nnm0r 8535 naddrid 8608 naddlid 8609 naddword1 8616 card2on 9465 card2inf 9466 harcl 9470 cantnfvalf 9580 rankon 9710 cardon 9859 card0 9873 alephon 9982 alephgeom 9995 alephfplem1 10017 djufi 10100 ttukeylem4 10425 ttukeylem7 10428 cfpwsdom 10497 inar1 10688 rankcf 10690 gruina 10731 sltval2 27584 sltsolem1 27603 nosepnelem 27607 nodense 27620 nolt02o 27623 bdayelon 27704 cuteq1 27766 old0 27787 made0 27805 old1 27807 mulsproplem2 28043 mulsproplem3 28044 mulsproplem4 28045 mulsproplem5 28046 mulsproplem6 28047 mulsproplem7 28048 mulsproplem8 28049 mulsproplem12 28053 mulsproplem13 28054 mulsproplem14 28055 precsexlem1 28132 precsexlem2 28133 bnj168 34699 rdgprc0 35769 rankeq1o 36147 0hf 36153 onsucconn 36414 onsucsuccmp 36420 finxp1o 37368 finxpreclem4 37370 harn0 43078 onexoegt 43220 ordeldif1o 43236 oe0suclim 43253 oaordnr 43272 nnoeomeqom 43288 oenass 43295 omabs2 43308 omcl3g 43310 naddcnff 43338 nadd2rabex 43362 safesnsupfiss 43391 safesnsupfidom1o 43393 safesnsupfilb 43394 0no 43411 nlim1NEW 43418 aleph1min 43533 wfaxrep 44971 wfaxnul 44973 |
| Copyright terms: Public domain | W3C validator |