| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon | ⊢ ∅ ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6365 | . 2 ⊢ Ord ∅ | |
| 2 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elon 6320 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∅c0 4282 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-tr 5201 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: inton 6370 onn0 6377 on0eqel 6436 orduninsuc 7779 onzsl 7782 peano1 7825 smofvon2 8282 tfrlem16 8318 rdg0n 8359 1on 8403 ordgt0ge1 8414 oa0 8437 om0 8438 oe0m 8439 oe0m0 8441 oe0 8443 oesuclem 8446 omcl 8457 oecl 8458 oa0r 8459 om0r 8460 oaord1 8472 oaword1 8473 oaword2 8474 oawordeu 8476 oa00 8480 odi 8500 oeoa 8518 oeoe 8520 nna0r 8530 nnm0r 8531 naddrid 8604 naddlid 8605 naddword1 8612 card2on 9447 card2inf 9448 harcl 9452 cantnfvalf 9562 rankon 9695 cardon 9844 card0 9858 alephon 9967 alephgeom 9980 alephfplem1 10002 djufi 10085 ttukeylem4 10410 ttukeylem7 10413 cfpwsdom 10482 inar1 10673 rankcf 10675 gruina 10716 sltval2 27596 sltsolem1 27615 nosepnelem 27619 nodense 27632 nolt02o 27635 bdayelon 27716 cuteq1 27779 old0 27801 made0 27819 old1 27821 mulsproplem2 28057 mulsproplem3 28058 mulsproplem4 28059 mulsproplem5 28060 mulsproplem6 28061 mulsproplem7 28062 mulsproplem8 28063 mulsproplem12 28067 mulsproplem13 28068 mulsproplem14 28069 precsexlem1 28146 precsexlem2 28147 bnj168 34763 r1wf 35128 fineqvnttrclse 35165 rdgprc0 35856 rankeq1o 36236 0hf 36242 onsucconn 36503 onsucsuccmp 36509 finxp1o 37457 finxpreclem4 37459 harn0 43220 onexoegt 43362 ordeldif1o 43378 oe0suclim 43395 oaordnr 43414 nnoeomeqom 43430 oenass 43437 omabs2 43450 omcl3g 43452 naddcnff 43480 nadd2rabex 43504 safesnsupfiss 43533 safesnsupfidom1o 43535 safesnsupfilb 43536 0no 43553 nlim1NEW 43560 aleph1min 43675 wfaxrep 45112 wfaxnul 45114 |
| Copyright terms: Public domain | W3C validator |