| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon | ⊢ ∅ ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6386 | . 2 ⊢ Ord ∅ | |
| 2 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elon 6341 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4296 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: inton 6391 onn0 6398 on0eqel 6458 orduninsuc 7819 onzsl 7822 peano1 7865 smofvon2 8325 tfrlem16 8361 rdg0n 8402 1on 8446 ordgt0ge1 8457 oa0 8480 om0 8481 oe0m 8482 oe0m0 8484 oe0 8486 oesuclem 8489 omcl 8500 oecl 8501 oa0r 8502 om0r 8503 oaord1 8515 oaword1 8516 oaword2 8517 oawordeu 8519 oa00 8523 odi 8543 oeoa 8561 oeoe 8563 nna0r 8573 nnm0r 8574 naddrid 8647 naddlid 8648 naddword1 8655 card2on 9507 card2inf 9508 harcl 9512 cantnfvalf 9618 rankon 9748 cardon 9897 card0 9911 alephon 10022 alephgeom 10035 alephfplem1 10057 djufi 10140 ttukeylem4 10465 ttukeylem7 10468 cfpwsdom 10537 inar1 10728 rankcf 10730 gruina 10771 sltval2 27568 sltsolem1 27587 nosepnelem 27591 nodense 27604 nolt02o 27607 bdayelon 27688 cuteq1 27746 old0 27767 made0 27785 old1 27787 mulsproplem2 28020 mulsproplem3 28021 mulsproplem4 28022 mulsproplem5 28023 mulsproplem6 28024 mulsproplem7 28025 mulsproplem8 28026 mulsproplem12 28030 mulsproplem13 28031 mulsproplem14 28032 precsexlem1 28109 precsexlem2 28110 bnj168 34720 rdgprc0 35781 rankeq1o 36159 0hf 36165 onsucconn 36426 onsucsuccmp 36432 finxp1o 37380 finxpreclem4 37382 harn0 43091 onexoegt 43233 ordeldif1o 43249 oe0suclim 43266 oaordnr 43285 nnoeomeqom 43301 oenass 43308 omabs2 43321 omcl3g 43323 naddcnff 43351 nadd2rabex 43375 safesnsupfiss 43404 safesnsupfidom1o 43406 safesnsupfilb 43407 0no 43424 nlim1NEW 43431 aleph1min 43546 wfaxrep 44984 wfaxnul 44986 |
| Copyright terms: Public domain | W3C validator |