Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 6303 | . 2 ⊢ Ord ∅ | |
2 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 6260 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 230 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4253 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: inton 6308 onn0 6315 on0eqel 6369 orduninsuc 7665 onzsl 7668 smofvon2 8158 tfrlem16 8195 1on 8274 ordgt0ge1 8289 oa0 8308 om0 8309 oe0m 8310 oe0m0 8312 oe0 8314 oesuclem 8317 omcl 8328 oecl 8329 oa0r 8330 om0r 8331 oaord1 8344 oaword1 8345 oaword2 8346 oawordeu 8348 oa00 8352 odi 8372 oeoa 8390 oeoe 8392 nna0r 8402 nnm0r 8403 card2on 9243 card2inf 9244 harcl 9248 cantnfvalf 9353 rankon 9484 cardon 9633 card0 9647 alephon 9756 alephgeom 9769 alephfplem1 9791 djufi 9873 ttukeylem4 10199 ttukeylem7 10202 cfpwsdom 10271 inar1 10462 rankcf 10464 gruina 10505 bnj168 32609 rdg0n 33598 rdgprc0 33675 naddid1 33763 sltval2 33786 sltsolem1 33805 nosepnelem 33809 nodense 33822 nolt02o 33825 bdayelon 33898 old0 33970 made0 33984 rankeq1o 34400 0hf 34406 onsucconn 34554 onsucsuccmp 34560 finxp1o 35490 finxpreclem4 35492 harn0 40843 aleph1min 41053 |
Copyright terms: Public domain | W3C validator |