| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon | ⊢ ∅ ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6406 | . 2 ⊢ Ord ∅ | |
| 2 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elon 6361 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∅c0 4308 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-tr 5230 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: inton 6411 onn0 6418 on0eqel 6478 orduninsuc 7838 onzsl 7841 peano1 7884 smofvon2 8370 tfrlem16 8407 rdg0n 8448 1on 8492 1onOLD 8493 ordgt0ge1 8505 oa0 8528 om0 8529 oe0m 8530 oe0m0 8532 oe0 8534 oesuclem 8537 omcl 8548 oecl 8549 oa0r 8550 om0r 8551 oaord1 8563 oaword1 8564 oaword2 8565 oawordeu 8567 oa00 8571 odi 8591 oeoa 8609 oeoe 8611 nna0r 8621 nnm0r 8622 naddrid 8695 naddlid 8696 naddword1 8703 card2on 9568 card2inf 9569 harcl 9573 cantnfvalf 9679 rankon 9809 cardon 9958 card0 9972 alephon 10083 alephgeom 10096 alephfplem1 10118 djufi 10201 ttukeylem4 10526 ttukeylem7 10529 cfpwsdom 10598 inar1 10789 rankcf 10791 gruina 10832 sltval2 27620 sltsolem1 27639 nosepnelem 27643 nodense 27656 nolt02o 27659 bdayelon 27740 cuteq1 27798 old0 27819 made0 27837 old1 27839 mulsproplem2 28072 mulsproplem3 28073 mulsproplem4 28074 mulsproplem5 28075 mulsproplem6 28076 mulsproplem7 28077 mulsproplem8 28078 mulsproplem12 28082 mulsproplem13 28083 mulsproplem14 28084 precsexlem1 28161 precsexlem2 28162 bnj168 34761 rdgprc0 35811 rankeq1o 36189 0hf 36195 onsucconn 36456 onsucsuccmp 36462 finxp1o 37410 finxpreclem4 37412 harn0 43126 onexoegt 43268 ordeldif1o 43284 oe0suclim 43301 oaordnr 43320 nnoeomeqom 43336 oenass 43343 omabs2 43356 omcl3g 43358 naddcnff 43386 nadd2rabex 43410 safesnsupfiss 43439 safesnsupfidom1o 43441 safesnsupfilb 43442 0no 43459 nlim1NEW 43466 aleph1min 43581 wfaxrep 45019 wfaxnul 45021 |
| Copyright terms: Public domain | W3C validator |