| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op01dm | Structured version Visualization version GIF version | ||
| Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| op01dm.b | ⊢ 𝐵 = (Base‘𝐾) |
| op01dm.u | ⊢ 𝑈 = (lub‘𝐾) |
| op01dm.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| op01dm | ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op01dm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | op01dm.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | op01dm.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2735 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | eqid 2735 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 7 | eqid 2735 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | eqid 2735 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 9 | eqid 2735 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 39144 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
| 11 | simpl 482 | . . 3 ⊢ (((𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) | |
| 12 | 11 | 3adantl1 1167 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
| 13 | 10, 12 | sylbi 217 | 1 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 dom cdm 5654 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 lecple 17276 occoc 17277 Posetcpo 18317 lubclub 18319 glbcglb 18320 joincjn 18321 meetcmee 18322 0.cp0 18431 1.cp1 18432 OPcops 39136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6483 df-fv 6538 df-ov 7406 df-oposet 39140 |
| This theorem is referenced by: op0cl 39148 op1cl 39149 op0le 39150 ople1 39155 lhp2lt 39966 |
| Copyright terms: Public domain | W3C validator |