![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > op01dm | Structured version Visualization version GIF version |
Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
op01dm.b | ⊢ 𝐵 = (Base‘𝐾) |
op01dm.u | ⊢ 𝑈 = (lub‘𝐾) |
op01dm.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
op01dm | ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op01dm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | op01dm.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
3 | op01dm.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | eqid 2740 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2740 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | eqid 2740 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
7 | eqid 2740 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | eqid 2740 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
9 | eqid 2740 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 39136 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
11 | simpl 482 | . . 3 ⊢ (((𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) | |
12 | 11 | 3adantl1 1166 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
13 | 10, 12 | sylbi 217 | 1 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 occoc 17319 Posetcpo 18377 lubclub 18379 glbcglb 18380 joincjn 18381 meetcmee 18382 0.cp0 18493 1.cp1 18494 OPcops 39128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-oposet 39132 |
This theorem is referenced by: op0cl 39140 op1cl 39141 op0le 39142 ople1 39147 lhp2lt 39958 |
Copyright terms: Public domain | W3C validator |