Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op01dm Structured version   Visualization version   GIF version

Theorem op01dm 39147
Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
op01dm.b 𝐵 = (Base‘𝐾)
op01dm.u 𝑈 = (lub‘𝐾)
op01dm.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
op01dm (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))

Proof of Theorem op01dm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 op01dm.b . . 3 𝐵 = (Base‘𝐾)
2 op01dm.u . . 3 𝑈 = (lub‘𝐾)
3 op01dm.g . . 3 𝐺 = (glb‘𝐾)
4 eqid 2735 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2735 . . 3 (oc‘𝐾) = (oc‘𝐾)
6 eqid 2735 . . 3 (join‘𝐾) = (join‘𝐾)
7 eqid 2735 . . 3 (meet‘𝐾) = (meet‘𝐾)
8 eqid 2735 . . 3 (0.‘𝐾) = (0.‘𝐾)
9 eqid 2735 . . 3 (1.‘𝐾) = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 39144 . 2 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))))
11 simpl 482 . . 3 (((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
12113adantl1 1167 . 2 (((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
1310, 12sylbi 217 1 (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  dom cdm 5654  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  occoc 17277  Posetcpo 18317  lubclub 18319  glbcglb 18320  joincjn 18321  meetcmee 18322  0.cp0 18431  1.cp1 18432  OPcops 39136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-dm 5664  df-iota 6483  df-fv 6538  df-ov 7406  df-oposet 39140
This theorem is referenced by:  op0cl  39148  op1cl  39149  op0le  39150  ople1  39155  lhp2lt  39966
  Copyright terms: Public domain W3C validator