Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > op01dm | Structured version Visualization version GIF version |
Description: Conditions necessary for zero and unit elements to exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
op01dm.b | ⊢ 𝐵 = (Base‘𝐾) |
op01dm.u | ⊢ 𝑈 = (lub‘𝐾) |
op01dm.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
op01dm | ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op01dm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | op01dm.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
3 | op01dm.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | eqid 2738 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
7 | eqid 2738 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | eqid 2738 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
9 | eqid 2738 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 37194 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
11 | simpl 483 | . . 3 ⊢ (((𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) | |
12 | 11 | 3adantl1 1165 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
13 | 10, 12 | sylbi 216 | 1 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 occoc 16970 Posetcpo 18025 lubclub 18027 glbcglb 18028 joincjn 18029 meetcmee 18030 0.cp0 18141 1.cp1 18142 OPcops 37186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-oposet 37190 |
This theorem is referenced by: op0cl 37198 op1cl 37199 op0le 37200 ople1 37205 lhp2lt 38015 |
Copyright terms: Public domain | W3C validator |