Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op01dm Structured version   Visualization version   GIF version

Theorem op01dm 37197
Description: Conditions necessary for zero and unit elements to exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
op01dm.b 𝐵 = (Base‘𝐾)
op01dm.u 𝑈 = (lub‘𝐾)
op01dm.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
op01dm (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))

Proof of Theorem op01dm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 op01dm.b . . 3 𝐵 = (Base‘𝐾)
2 op01dm.u . . 3 𝑈 = (lub‘𝐾)
3 op01dm.g . . 3 𝐺 = (glb‘𝐾)
4 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2738 . . 3 (oc‘𝐾) = (oc‘𝐾)
6 eqid 2738 . . 3 (join‘𝐾) = (join‘𝐾)
7 eqid 2738 . . 3 (meet‘𝐾) = (meet‘𝐾)
8 eqid 2738 . . 3 (0.‘𝐾) = (0.‘𝐾)
9 eqid 2738 . . 3 (1.‘𝐾) = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 37194 . 2 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))))
11 simpl 483 . . 3 (((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
12113adantl1 1165 . 2 (((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
1310, 12sylbi 216 1 (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  occoc 16970  Posetcpo 18025  lubclub 18027  glbcglb 18028  joincjn 18029  meetcmee 18030  0.cp0 18141  1.cp1 18142  OPcops 37186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278  df-oposet 37190
This theorem is referenced by:  op0cl  37198  op1cl  37199  op0le  37200  ople1  37205  lhp2lt  38015
  Copyright terms: Public domain W3C validator