| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op01dm | Structured version Visualization version GIF version | ||
| Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| op01dm.b | ⊢ 𝐵 = (Base‘𝐾) |
| op01dm.u | ⊢ 𝑈 = (lub‘𝐾) |
| op01dm.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| op01dm | ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op01dm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | op01dm.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | op01dm.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2730 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | eqid 2730 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 7 | eqid 2730 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | eqid 2730 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 9 | eqid 2730 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 39180 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
| 11 | simpl 482 | . . 3 ⊢ (((𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) | |
| 12 | 11 | 3adantl1 1167 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
| 13 | 10, 12 | sylbi 217 | 1 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 occoc 17235 Posetcpo 18275 lubclub 18277 glbcglb 18278 joincjn 18279 meetcmee 18280 0.cp0 18389 1.cp1 18390 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-oposet 39176 |
| This theorem is referenced by: op0cl 39184 op1cl 39185 op0le 39186 ople1 39191 lhp2lt 40002 |
| Copyright terms: Public domain | W3C validator |