Step | Hyp | Ref
| Expression |
1 | | op01dm.b |
. . 3
β’ π΅ = (BaseβπΎ) |
2 | | op01dm.u |
. . 3
β’ π = (lubβπΎ) |
3 | | op01dm.g |
. . 3
β’ πΊ = (glbβπΎ) |
4 | | eqid 2732 |
. . 3
β’
(leβπΎ) =
(leβπΎ) |
5 | | eqid 2732 |
. . 3
β’
(ocβπΎ) =
(ocβπΎ) |
6 | | eqid 2732 |
. . 3
β’
(joinβπΎ) =
(joinβπΎ) |
7 | | eqid 2732 |
. . 3
β’
(meetβπΎ) =
(meetβπΎ) |
8 | | eqid 2732 |
. . 3
β’
(0.βπΎ) =
(0.βπΎ) |
9 | | eqid 2732 |
. . 3
β’
(1.βπΎ) =
(1.βπΎ) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 38038 |
. 2
β’ (πΎ β OP β ((πΎ β Poset β§ π΅ β dom π β§ π΅ β dom πΊ) β§ βπ₯ β π΅ βπ¦ β π΅ ((((ocβπΎ)βπ₯) β π΅ β§ ((ocβπΎ)β((ocβπΎ)βπ₯)) = π₯ β§ (π₯(leβπΎ)π¦ β ((ocβπΎ)βπ¦)(leβπΎ)((ocβπΎ)βπ₯))) β§ (π₯(joinβπΎ)((ocβπΎ)βπ₯)) = (1.βπΎ) β§ (π₯(meetβπΎ)((ocβπΎ)βπ₯)) = (0.βπΎ)))) |
11 | | simpl 483 |
. . 3
β’ (((π΅ β dom π β§ π΅ β dom πΊ) β§ βπ₯ β π΅ βπ¦ β π΅ ((((ocβπΎ)βπ₯) β π΅ β§ ((ocβπΎ)β((ocβπΎ)βπ₯)) = π₯ β§ (π₯(leβπΎ)π¦ β ((ocβπΎ)βπ¦)(leβπΎ)((ocβπΎ)βπ₯))) β§ (π₯(joinβπΎ)((ocβπΎ)βπ₯)) = (1.βπΎ) β§ (π₯(meetβπΎ)((ocβπΎ)βπ₯)) = (0.βπΎ))) β (π΅ β dom π β§ π΅ β dom πΊ)) |
12 | 11 | 3adantl1 1166 |
. 2
β’ (((πΎ β Poset β§ π΅ β dom π β§ π΅ β dom πΊ) β§ βπ₯ β π΅ βπ¦ β π΅ ((((ocβπΎ)βπ₯) β π΅ β§ ((ocβπΎ)β((ocβπΎ)βπ₯)) = π₯ β§ (π₯(leβπΎ)π¦ β ((ocβπΎ)βπ¦)(leβπΎ)((ocβπΎ)βπ₯))) β§ (π₯(joinβπΎ)((ocβπΎ)βπ₯)) = (1.βπΎ) β§ (π₯(meetβπΎ)((ocβπΎ)βπ₯)) = (0.βπΎ))) β (π΅ β dom π β§ π΅ β dom πΊ)) |
13 | 10, 12 | sylbi 216 |
1
β’ (πΎ β OP β (π΅ β dom π β§ π΅ β dom πΊ)) |