Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op01dm Structured version   Visualization version   GIF version

Theorem op01dm 39230
Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
op01dm.b 𝐵 = (Base‘𝐾)
op01dm.u 𝑈 = (lub‘𝐾)
op01dm.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
op01dm (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))

Proof of Theorem op01dm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 op01dm.b . . 3 𝐵 = (Base‘𝐾)
2 op01dm.u . . 3 𝑈 = (lub‘𝐾)
3 op01dm.g . . 3 𝐺 = (glb‘𝐾)
4 eqid 2731 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2731 . . 3 (oc‘𝐾) = (oc‘𝐾)
6 eqid 2731 . . 3 (join‘𝐾) = (join‘𝐾)
7 eqid 2731 . . 3 (meet‘𝐾) = (meet‘𝐾)
8 eqid 2731 . . 3 (0.‘𝐾) = (0.‘𝐾)
9 eqid 2731 . . 3 (1.‘𝐾) = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 39227 . 2 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))))
11 simpl 482 . . 3 (((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
12113adantl1 1167 . 2 (((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((((oc‘𝐾)‘𝑥) ∈ 𝐵 ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
1310, 12sylbi 217 1 (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  occoc 17169  Posetcpo 18213  lubclub 18215  glbcglb 18216  joincjn 18217  meetcmee 18218  0.cp0 18327  1.cp1 18328  OPcops 39219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-dm 5624  df-iota 6437  df-fv 6489  df-ov 7349  df-oposet 39223
This theorem is referenced by:  op0cl  39231  op1cl  39232  op0le  39233  ople1  39238  lhp2lt  40048
  Copyright terms: Public domain W3C validator