Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op01dm Structured version   Visualization version   GIF version

Theorem op01dm 38041
Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
op01dm.b 𝐡 = (Baseβ€˜πΎ)
op01dm.u π‘ˆ = (lubβ€˜πΎ)
op01dm.g 𝐺 = (glbβ€˜πΎ)
Assertion
Ref Expression
op01dm (𝐾 ∈ OP β†’ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺))

Proof of Theorem op01dm
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 op01dm.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 op01dm.u . . 3 π‘ˆ = (lubβ€˜πΎ)
3 op01dm.g . . 3 𝐺 = (glbβ€˜πΎ)
4 eqid 2732 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
5 eqid 2732 . . 3 (ocβ€˜πΎ) = (ocβ€˜πΎ)
6 eqid 2732 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
7 eqid 2732 . . 3 (meetβ€˜πΎ) = (meetβ€˜πΎ)
8 eqid 2732 . . 3 (0.β€˜πΎ) = (0.β€˜πΎ)
9 eqid 2732 . . 3 (1.β€˜πΎ) = (1.β€˜πΎ)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 38038 . 2 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((((ocβ€˜πΎ)β€˜π‘₯) ∈ 𝐡 ∧ ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜πΎ)𝑦 β†’ ((ocβ€˜πΎ)β€˜π‘¦)(leβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯))) ∧ (π‘₯(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯)) = (1.β€˜πΎ) ∧ (π‘₯(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯)) = (0.β€˜πΎ))))
11 simpl 483 . . 3 (((𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((((ocβ€˜πΎ)β€˜π‘₯) ∈ 𝐡 ∧ ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜πΎ)𝑦 β†’ ((ocβ€˜πΎ)β€˜π‘¦)(leβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯))) ∧ (π‘₯(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯)) = (1.β€˜πΎ) ∧ (π‘₯(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯)) = (0.β€˜πΎ))) β†’ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺))
12113adantl1 1166 . 2 (((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((((ocβ€˜πΎ)β€˜π‘₯) ∈ 𝐡 ∧ ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜πΎ)𝑦 β†’ ((ocβ€˜πΎ)β€˜π‘¦)(leβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯))) ∧ (π‘₯(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯)) = (1.β€˜πΎ) ∧ (π‘₯(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜π‘₯)) = (0.β€˜πΎ))) β†’ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺))
1310, 12sylbi 216 1 (𝐾 ∈ OP β†’ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5147  dom cdm 5675  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  occoc 17201  Posetcpo 18256  lubclub 18258  glbcglb 18259  joincjn 18260  meetcmee 18261  0.cp0 18372  1.cp1 18373  OPcops 38030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-dm 5685  df-iota 6492  df-fv 6548  df-ov 7408  df-oposet 38034
This theorem is referenced by:  op0cl  38042  op1cl  38043  op0le  38044  ople1  38049  lhp2lt  38860
  Copyright terms: Public domain W3C validator