Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ople1 Structured version   Visualization version   GIF version

Theorem ople1 35265
Description: Any element is less than the orthoposet unit. (chss 28640 analog.) (Contributed by NM, 23-Oct-2011.)
Hypotheses
Ref Expression
ople1.b 𝐵 = (Base‘𝐾)
ople1.l = (le‘𝐾)
ople1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
ople1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋 1 )

Proof of Theorem ople1
StepHypRef Expression
1 ople1.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2824 . 2 (lub‘𝐾) = (lub‘𝐾)
3 ople1.l . 2 = (le‘𝐾)
4 ople1.u . 2 1 = (1.‘𝐾)
5 simpl 476 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 simpr 479 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2824 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
81, 2, 7op01dm 35257 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
98simpld 490 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾))
109adantr 474 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐵 ∈ dom (lub‘𝐾))
111, 2, 3, 4, 5, 6, 10ple1 17396 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166   class class class wbr 4872  dom cdm 5341  cfv 6122  Basecbs 16221  lecple 16311  lubclub 17294  glbcglb 17295  1.cp1 17390  OPcops 35246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-lub 17326  df-p1 17392  df-oposet 35250
This theorem is referenced by:  op1le  35266  glb0N  35267  opoc1  35276  ncvr1  35346  1cvrat  35550  pmap1N  35841  pol1N  35984  dih1  37360  dihjatc  37491
  Copyright terms: Public domain W3C validator