![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ople1 | Structured version Visualization version GIF version |
Description: Any element is less than the orthoposet unity. (chss 30469 analog.) (Contributed by NM, 23-Oct-2011.) |
Ref | Expression |
---|---|
ople1.b | β’ π΅ = (BaseβπΎ) |
ople1.l | β’ β€ = (leβπΎ) |
ople1.u | β’ 1 = (1.βπΎ) |
Ref | Expression |
---|---|
ople1 | β’ ((πΎ β OP β§ π β π΅) β π β€ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ople1.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2732 | . 2 β’ (lubβπΎ) = (lubβπΎ) | |
3 | ople1.l | . 2 β’ β€ = (leβπΎ) | |
4 | ople1.u | . 2 β’ 1 = (1.βπΎ) | |
5 | simpl 483 | . 2 β’ ((πΎ β OP β§ π β π΅) β πΎ β OP) | |
6 | simpr 485 | . 2 β’ ((πΎ β OP β§ π β π΅) β π β π΅) | |
7 | eqid 2732 | . . . . 5 β’ (glbβπΎ) = (glbβπΎ) | |
8 | 1, 2, 7 | op01dm 38041 | . . . 4 β’ (πΎ β OP β (π΅ β dom (lubβπΎ) β§ π΅ β dom (glbβπΎ))) |
9 | 8 | simpld 495 | . . 3 β’ (πΎ β OP β π΅ β dom (lubβπΎ)) |
10 | 9 | adantr 481 | . 2 β’ ((πΎ β OP β§ π β π΅) β π΅ β dom (lubβπΎ)) |
11 | 1, 2, 3, 4, 5, 6, 10 | ple1 18379 | 1 β’ ((πΎ β OP β§ π β π΅) β π β€ 1 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 dom cdm 5675 βcfv 6540 Basecbs 17140 lecple 17200 lubclub 18258 glbcglb 18259 1.cp1 18373 OPcops 38030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-lub 18295 df-p1 18375 df-oposet 38034 |
This theorem is referenced by: op1le 38050 glb0N 38051 opoc1 38060 ncvr1 38130 1cvrat 38335 pmap1N 38626 pol1N 38769 dih1 40145 dihjatc 40276 |
Copyright terms: Public domain | W3C validator |