Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ople1 Structured version   Visualization version   GIF version

Theorem ople1 37213
Description: Any element is less than the orthoposet unit. (chss 29599 analog.) (Contributed by NM, 23-Oct-2011.)
Hypotheses
Ref Expression
ople1.b 𝐵 = (Base‘𝐾)
ople1.l = (le‘𝐾)
ople1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
ople1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋 1 )

Proof of Theorem ople1
StepHypRef Expression
1 ople1.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2738 . 2 (lub‘𝐾) = (lub‘𝐾)
3 ople1.l . 2 = (le‘𝐾)
4 ople1.u . 2 1 = (1.‘𝐾)
5 simpl 483 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 simpr 485 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2738 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
81, 2, 7op01dm 37205 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
98simpld 495 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾))
109adantr 481 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐵 ∈ dom (lub‘𝐾))
111, 2, 3, 4, 5, 6, 10ple1 18158 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5073  dom cdm 5584  cfv 6426  Basecbs 16922  lecple 16979  lubclub 18037  glbcglb 18038  1.cp1 18152  OPcops 37194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-lub 18074  df-p1 18154  df-oposet 37198
This theorem is referenced by:  op1le  37214  glb0N  37215  opoc1  37224  ncvr1  37294  1cvrat  37498  pmap1N  37789  pol1N  37932  dih1  39308  dihjatc  39439
  Copyright terms: Public domain W3C validator