![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ople1 | Structured version Visualization version GIF version |
Description: Any element is less than the orthoposet unity. (chss 31052 analog.) (Contributed by NM, 23-Oct-2011.) |
Ref | Expression |
---|---|
ople1.b | β’ π΅ = (BaseβπΎ) |
ople1.l | β’ β€ = (leβπΎ) |
ople1.u | β’ 1 = (1.βπΎ) |
Ref | Expression |
---|---|
ople1 | β’ ((πΎ β OP β§ π β π΅) β π β€ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ople1.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2728 | . 2 β’ (lubβπΎ) = (lubβπΎ) | |
3 | ople1.l | . 2 β’ β€ = (leβπΎ) | |
4 | ople1.u | . 2 β’ 1 = (1.βπΎ) | |
5 | simpl 482 | . 2 β’ ((πΎ β OP β§ π β π΅) β πΎ β OP) | |
6 | simpr 484 | . 2 β’ ((πΎ β OP β§ π β π΅) β π β π΅) | |
7 | eqid 2728 | . . . . 5 β’ (glbβπΎ) = (glbβπΎ) | |
8 | 1, 2, 7 | op01dm 38655 | . . . 4 β’ (πΎ β OP β (π΅ β dom (lubβπΎ) β§ π΅ β dom (glbβπΎ))) |
9 | 8 | simpld 494 | . . 3 β’ (πΎ β OP β π΅ β dom (lubβπΎ)) |
10 | 9 | adantr 480 | . 2 β’ ((πΎ β OP β§ π β π΅) β π΅ β dom (lubβπΎ)) |
11 | 1, 2, 3, 4, 5, 6, 10 | ple1 18422 | 1 β’ ((πΎ β OP β§ π β π΅) β π β€ 1 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 class class class wbr 5148 dom cdm 5678 βcfv 6548 Basecbs 17180 lecple 17240 lubclub 18301 glbcglb 18302 1.cp1 18416 OPcops 38644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-lub 18338 df-p1 18418 df-oposet 38648 |
This theorem is referenced by: op1le 38664 glb0N 38665 opoc1 38674 ncvr1 38744 1cvrat 38949 pmap1N 39240 pol1N 39383 dih1 40759 dihjatc 40890 |
Copyright terms: Public domain | W3C validator |