Step | Hyp | Ref
| Expression |
1 | | simp2r 1199 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑃 ≤ 𝑊) |
2 | | simp3r 1201 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑄 ≤ 𝑊) |
3 | | simp1l 1196 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37378 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝐾 ∈ Lat) |
5 | | simp2l 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | lhp2lt.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 6, 7 | atbase 37303 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
9 | 5, 8 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
10 | | simp3l 1200 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑄 ∈ 𝐴) |
11 | 6, 7 | atbase 37303 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
12 | 10, 11 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑄 ∈ (Base‘𝐾)) |
13 | | simp1r 1197 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
14 | | lhp2lt.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
15 | 6, 14 | lhpbase 38012 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
16 | 13, 15 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
17 | | lhp2lt.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
18 | | lhp2lt.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
19 | 6, 17, 18 | latjle12 18168 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
20 | 4, 9, 12, 16, 19 | syl13anc 1371 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
21 | 1, 2, 20 | mpbi2and 709 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → (𝑃 ∨ 𝑄) ≤ 𝑊) |
22 | 18, 17, 7 | 3dim2 37482 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
23 | 3, 5, 10, 22 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
24 | | simp11l 1283 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝐾 ∈ HL) |
25 | | hlop 37376 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝐾 ∈ OP) |
27 | 24 | hllatd 37378 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝐾 ∈ Lat) |
28 | | simp12l 1285 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝑃 ∈ 𝐴) |
29 | | simp13l 1287 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝑄 ∈ 𝐴) |
30 | 6, 18, 7 | hlatjcl 37381 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
31 | 24, 28, 29, 30 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
32 | | simp2l 1198 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝑟 ∈ 𝐴) |
33 | 6, 7 | atbase 37303 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ (Base‘𝐾)) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝑟 ∈ (Base‘𝐾)) |
35 | 6, 18 | latjcl 18157 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑟) ∈ (Base‘𝐾)) |
36 | 27, 31, 34, 35 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → ((𝑃 ∨ 𝑄) ∨ 𝑟) ∈ (Base‘𝐾)) |
37 | | simp2r 1199 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝑠 ∈ 𝐴) |
38 | 6, 7 | atbase 37303 |
. . . . . . . . 9
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ (Base‘𝐾)) |
39 | 37, 38 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → 𝑠 ∈ (Base‘𝐾)) |
40 | 6, 18 | latjcl 18157 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠) ∈ (Base‘𝐾)) |
41 | 27, 36, 39, 40 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → (((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠) ∈ (Base‘𝐾)) |
42 | | eqid 2738 |
. . . . . . . 8
⊢
(1.‘𝐾) =
(1.‘𝐾) |
43 | | eqid 2738 |
. . . . . . . 8
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
44 | 6, 42, 43 | ncvr1 37286 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ (((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠) ∈ (Base‘𝐾)) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠)) |
45 | 26, 41, 44 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠)) |
46 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(lub‘𝐾) =
(lub‘𝐾) |
47 | | simpl1l 1223 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝐾 ∈ HL) |
48 | 47 | hllatd 37378 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝐾 ∈ Lat) |
49 | | simpl2l 1225 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝑃 ∈ 𝐴) |
50 | | simpl3l 1227 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝑄 ∈ 𝐴) |
51 | 47, 49, 50, 30 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
52 | | simpr1l 1229 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝑟 ∈ 𝐴) |
53 | 52, 33 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝑟 ∈ (Base‘𝐾)) |
54 | 48, 51, 53, 35 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → ((𝑃 ∨ 𝑄) ∨ 𝑟) ∈ (Base‘𝐾)) |
55 | 47, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝐾 ∈ OP) |
56 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(glb‘𝐾) =
(glb‘𝐾) |
57 | 6, 46, 56 | op01dm 37197 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ OP →
((Base‘𝐾) ∈ dom
(lub‘𝐾) ∧
(Base‘𝐾) ∈ dom
(glb‘𝐾))) |
58 | 57 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ OP →
(Base‘𝐾) ∈ dom
(lub‘𝐾)) |
59 | 55, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (Base‘𝐾) ∈ dom (lub‘𝐾)) |
60 | 6, 46, 17, 42, 47, 54, 59 | ple1 18148 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → ((𝑃 ∨ 𝑄) ∨ 𝑟) ≤ (1.‘𝐾)) |
61 | | hlpos 37380 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
62 | 47, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝐾 ∈ Poset) |
63 | 6, 42 | op1cl 37199 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ OP →
(1.‘𝐾) ∈
(Base‘𝐾)) |
64 | 55, 63 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (1.‘𝐾) ∈ (Base‘𝐾)) |
65 | | simpr2l 1231 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)) |
66 | 6, 17, 18, 43, 7 | cvr1 37424 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑟 ∈ 𝐴) → (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑄)( ⋖ ‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑟))) |
67 | 47, 51, 52, 66 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑄)( ⋖ ‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑟))) |
68 | 65, 67 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (𝑃 ∨ 𝑄)( ⋖ ‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑟)) |
69 | | simpr3 1195 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (𝑃 ∨ 𝑄) = 𝑊) |
70 | | simpl1r 1224 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝑊 ∈ 𝐻) |
71 | 42, 43, 14 | lhp1cvr 38013 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
72 | 47, 70, 71 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
73 | 69, 72 | eqbrtrd 5096 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (𝑃 ∨ 𝑄)( ⋖ ‘𝐾)(1.‘𝐾)) |
74 | 6, 17, 43 | cvrcmp 37297 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Poset ∧ (((𝑃 ∨ 𝑄) ∨ 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 ∨ 𝑄)( ⋖ ‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑟) ∧ (𝑃 ∨ 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑟) ≤ (1.‘𝐾) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑟) = (1.‘𝐾))) |
75 | 62, 54, 64, 51, 68, 73, 74 | syl132anc 1387 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (((𝑃 ∨ 𝑄) ∨ 𝑟) ≤ (1.‘𝐾) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑟) = (1.‘𝐾))) |
76 | 60, 75 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → ((𝑃 ∨ 𝑄) ∨ 𝑟) = (1.‘𝐾)) |
77 | | simpr2r 1232 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) |
78 | | simpr1r 1230 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → 𝑠 ∈ 𝐴) |
79 | 6, 17, 18, 43, 7 | cvr1 37424 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄) ∨ 𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ 𝐴) → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑟)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠))) |
80 | 47, 54, 78, 79 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑟)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠))) |
81 | 77, 80 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → ((𝑃 ∨ 𝑄) ∨ 𝑟)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠)) |
82 | 76, 81 | eqbrtrrd 5098 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ∧ (𝑃 ∨ 𝑄) = 𝑊)) → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠)) |
83 | 82 | 3exp2 1353 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) → ((𝑃 ∨ 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠))))) |
84 | 83 | 3imp 1110 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → ((𝑃 ∨ 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠))) |
85 | 84 | necon3bd 2957 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → (¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 ∨ 𝑄) ∨ 𝑟) ∨ 𝑠) → (𝑃 ∨ 𝑄) ≠ 𝑊)) |
86 | 45, 85 | mpd 15 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) → (𝑃 ∨ 𝑄) ≠ 𝑊) |
87 | 86 | 3exp 1118 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) → (𝑃 ∨ 𝑄) ≠ 𝑊))) |
88 | 87 | rexlimdvv 3222 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → (∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) → (𝑃 ∨ 𝑄) ≠ 𝑊)) |
89 | 23, 88 | mpd 15 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → (𝑃 ∨ 𝑄) ≠ 𝑊) |
90 | 3, 5, 10, 30 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
91 | | lhp2lt.s |
. . . 4
⊢ < =
(lt‘𝐾) |
92 | 17, 91 | pltval 18050 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ 𝐻) → ((𝑃 ∨ 𝑄) < 𝑊 ↔ ((𝑃 ∨ 𝑄) ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) ≠ 𝑊))) |
93 | 3, 90, 13, 92 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → ((𝑃 ∨ 𝑄) < 𝑊 ↔ ((𝑃 ∨ 𝑄) ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) ≠ 𝑊))) |
94 | 21, 89, 93 | mpbir2and 710 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → (𝑃 ∨ 𝑄) < 𝑊) |