Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2lt Structured version   Visualization version   GIF version

Theorem lhp2lt 40048
Description: The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
lhp2lt.l = (le‘𝐾)
lhp2lt.s < = (lt‘𝐾)
lhp2lt.j = (join‘𝐾)
lhp2lt.a 𝐴 = (Atoms‘𝐾)
lhp2lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2lt (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)

Proof of Theorem lhp2lt
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 𝑊)
2 simp3r 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 𝑊)
3 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ HL)
43hllatd 39411 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃𝐴)
6 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 lhp2lt.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39336 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 ∈ (Base‘𝐾))
10 simp3l 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄𝐴)
116, 7atbase 39336 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 ∈ (Base‘𝐾))
13 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊𝐻)
14 lhp2lt.h . . . . . 6 𝐻 = (LHyp‘𝐾)
156, 14lhpbase 40045 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1613, 15syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊 ∈ (Base‘𝐾))
17 lhp2lt.l . . . . 5 = (le‘𝐾)
18 lhp2lt.j . . . . 5 = (join‘𝐾)
196, 17, 18latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
204, 9, 12, 16, 19syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
211, 2, 20mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) 𝑊)
2218, 17, 73dim2 39515 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
233, 5, 10, 22syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
24 simp11l 1285 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ HL)
25 hlop 39409 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
2624, 25syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ OP)
2724hllatd 39411 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ Lat)
28 simp12l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑃𝐴)
29 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑄𝐴)
306, 18, 7hlatjcl 39414 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3124, 28, 29, 30syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ∈ (Base‘𝐾))
32 simp2l 1200 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟𝐴)
336, 7atbase 39336 . . . . . . . . . 10 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟 ∈ (Base‘𝐾))
356, 18latjcl 18345 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
3627, 31, 34, 35syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
37 simp2r 1201 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠𝐴)
386, 7atbase 39336 . . . . . . . . 9 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
3937, 38syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠 ∈ (Base‘𝐾))
406, 18latjcl 18345 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
4127, 36, 39, 40syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
42 eqid 2731 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
43 eqid 2731 . . . . . . . 8 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
446, 42, 43ncvr1 39319 . . . . . . 7 ((𝐾 ∈ OP ∧ (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾)) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
4526, 41, 44syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
46 eqid 2731 . . . . . . . . . . . 12 (lub‘𝐾) = (lub‘𝐾)
47 simpl1l 1225 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ HL)
4847hllatd 39411 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Lat)
49 simpl2l 1227 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑃𝐴)
50 simpl3l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑄𝐴)
5147, 49, 50, 30syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
52 simpr1l 1231 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟𝐴)
5352, 33syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟 ∈ (Base‘𝐾))
5448, 51, 53, 35syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
5547, 25syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ OP)
56 eqid 2731 . . . . . . . . . . . . . . 15 (glb‘𝐾) = (glb‘𝐾)
576, 46, 56op01dm 39230 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → ((Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)))
5857simpld 494 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (Base‘𝐾) ∈ dom (lub‘𝐾))
5955, 58syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (Base‘𝐾) ∈ dom (lub‘𝐾))
606, 46, 17, 42, 47, 54, 59ple1 18334 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) (1.‘𝐾))
61 hlpos 39413 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6247, 61syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Poset)
636, 42op1cl 39232 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
6455, 63syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾) ∈ (Base‘𝐾))
65 simpr2l 1233 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑟 (𝑃 𝑄))
666, 17, 18, 43, 7cvr1 39457 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6747, 51, 52, 66syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6865, 67mpbid 232 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟))
69 simpr3 1197 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) = 𝑊)
70 simpl1r 1226 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊𝐻)
7142, 43, 14lhp1cvr 40046 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7247, 70, 71syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7369, 72eqbrtrd 5111 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))
746, 17, 43cvrcmp 39330 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟) ∧ (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7562, 54, 64, 51, 68, 73, 74syl132anc 1390 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7660, 75mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) = (1.‘𝐾))
77 simpr2r 1234 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑠 ((𝑃 𝑄) 𝑟))
78 simpr1r 1232 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑠𝐴)
796, 17, 18, 43, 7cvr1 39457 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8047, 54, 78, 79syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8177, 80mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
8276, 81eqbrtrrd 5113 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
83823exp2 1355 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))))
84833imp 1110 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8584necon3bd 2942 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠) → (𝑃 𝑄) ≠ 𝑊))
8645, 85mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ≠ 𝑊)
87863exp 1119 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊)))
8887rexlimdvv 3188 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊))
8923, 88mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ≠ 𝑊)
903, 5, 10, 30syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
91 lhp2lt.s . . . 4 < = (lt‘𝐾)
9217, 91pltval 18236 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊𝐻) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
933, 90, 13, 92syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
9421, 89, 93mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  Posetcpo 18213  ltcplt 18214  lubclub 18215  glbcglb 18216  joincjn 18217  1.cp1 18328  Latclat 18337  OPcops 39219  ccvr 39309  Atomscatm 39310  HLchlt 39397  LHypclh 40031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-lhyp 40035
This theorem is referenced by:  lhpexle3lem  40058
  Copyright terms: Public domain W3C validator