Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2lt Structured version   Visualization version   GIF version

Theorem lhp2lt 37005
Description: The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
lhp2lt.l = (le‘𝐾)
lhp2lt.s < = (lt‘𝐾)
lhp2lt.j = (join‘𝐾)
lhp2lt.a 𝐴 = (Atoms‘𝐾)
lhp2lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2lt (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)

Proof of Theorem lhp2lt
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 𝑊)
2 simp3r 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 𝑊)
3 simp1l 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ HL)
43hllatd 36368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃𝐴)
6 eqid 2824 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 lhp2lt.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 36293 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 ∈ (Base‘𝐾))
10 simp3l 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄𝐴)
116, 7atbase 36293 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 ∈ (Base‘𝐾))
13 simp1r 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊𝐻)
14 lhp2lt.h . . . . . 6 𝐻 = (LHyp‘𝐾)
156, 14lhpbase 37002 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1613, 15syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊 ∈ (Base‘𝐾))
17 lhp2lt.l . . . . 5 = (le‘𝐾)
18 lhp2lt.j . . . . 5 = (join‘𝐾)
196, 17, 18latjle12 17664 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
204, 9, 12, 16, 19syl13anc 1366 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
211, 2, 20mpbi2and 708 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) 𝑊)
2218, 17, 73dim2 36472 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
233, 5, 10, 22syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
24 simp11l 1278 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ HL)
25 hlop 36366 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
2624, 25syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ OP)
2724hllatd 36368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ Lat)
28 simp12l 1280 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑃𝐴)
29 simp13l 1282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑄𝐴)
306, 18, 7hlatjcl 36371 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3124, 28, 29, 30syl3anc 1365 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ∈ (Base‘𝐾))
32 simp2l 1193 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟𝐴)
336, 7atbase 36293 . . . . . . . . . 10 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟 ∈ (Base‘𝐾))
356, 18latjcl 17653 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
3627, 31, 34, 35syl3anc 1365 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
37 simp2r 1194 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠𝐴)
386, 7atbase 36293 . . . . . . . . 9 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
3937, 38syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠 ∈ (Base‘𝐾))
406, 18latjcl 17653 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
4127, 36, 39, 40syl3anc 1365 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
42 eqid 2824 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
43 eqid 2824 . . . . . . . 8 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
446, 42, 43ncvr1 36276 . . . . . . 7 ((𝐾 ∈ OP ∧ (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾)) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
4526, 41, 44syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
46 eqid 2824 . . . . . . . . . . . 12 (lub‘𝐾) = (lub‘𝐾)
47 simpl1l 1218 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ HL)
4847hllatd 36368 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Lat)
49 simpl2l 1220 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑃𝐴)
50 simpl3l 1222 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑄𝐴)
5147, 49, 50, 30syl3anc 1365 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
52 simpr1l 1224 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟𝐴)
5352, 33syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟 ∈ (Base‘𝐾))
5448, 51, 53, 35syl3anc 1365 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
5547, 25syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ OP)
56 eqid 2824 . . . . . . . . . . . . . . 15 (glb‘𝐾) = (glb‘𝐾)
576, 46, 56op01dm 36187 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → ((Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)))
5857simpld 495 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (Base‘𝐾) ∈ dom (lub‘𝐾))
5955, 58syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (Base‘𝐾) ∈ dom (lub‘𝐾))
606, 46, 17, 42, 47, 54, 59ple1 17646 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) (1.‘𝐾))
61 hlpos 36370 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6247, 61syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Poset)
636, 42op1cl 36189 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
6455, 63syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾) ∈ (Base‘𝐾))
65 simpr2l 1226 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑟 (𝑃 𝑄))
666, 17, 18, 43, 7cvr1 36414 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6747, 51, 52, 66syl3anc 1365 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6865, 67mpbid 233 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟))
69 simpr3 1190 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) = 𝑊)
70 simpl1r 1219 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊𝐻)
7142, 43, 14lhp1cvr 37003 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7247, 70, 71syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7369, 72eqbrtrd 5084 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))
746, 17, 43cvrcmp 36287 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟) ∧ (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7562, 54, 64, 51, 68, 73, 74syl132anc 1382 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7660, 75mpbid 233 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) = (1.‘𝐾))
77 simpr2r 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑠 ((𝑃 𝑄) 𝑟))
78 simpr1r 1225 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑠𝐴)
796, 17, 18, 43, 7cvr1 36414 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8047, 54, 78, 79syl3anc 1365 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8177, 80mpbid 233 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
8276, 81eqbrtrrd 5086 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
83823exp2 1348 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))))
84833imp 1105 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8584necon3bd 3034 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠) → (𝑃 𝑄) ≠ 𝑊))
8645, 85mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ≠ 𝑊)
87863exp 1113 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊)))
8887rexlimdvv 3297 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊))
8923, 88mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ≠ 𝑊)
903, 5, 10, 30syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
91 lhp2lt.s . . . 4 < = (lt‘𝐾)
9217, 91pltval 17562 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊𝐻) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
933, 90, 13, 92syl3anc 1365 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
9421, 89, 93mpbir2and 709 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wne 3020  wrex 3143   class class class wbr 5062  dom cdm 5553  cfv 6351  (class class class)co 7151  Basecbs 16475  lecple 16564  Posetcpo 17542  ltcplt 17543  lubclub 17544  glbcglb 17545  joincjn 17546  1.cp1 17640  Latclat 17647  OPcops 36176  ccvr 36266  Atomscatm 36267  HLchlt 36354  LHypclh 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36180  df-ol 36182  df-oml 36183  df-covers 36270  df-ats 36271  df-atl 36302  df-cvlat 36326  df-hlat 36355  df-lhyp 36992
This theorem is referenced by:  lhpexle3lem  37015
  Copyright terms: Public domain W3C validator