Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2lt Structured version   Visualization version   GIF version

Theorem lhp2lt 37139
Description: The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
lhp2lt.l = (le‘𝐾)
lhp2lt.s < = (lt‘𝐾)
lhp2lt.j = (join‘𝐾)
lhp2lt.a 𝐴 = (Atoms‘𝐾)
lhp2lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2lt (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)

Proof of Theorem lhp2lt
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 𝑊)
2 simp3r 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 𝑊)
3 simp1l 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ HL)
43hllatd 36502 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃𝐴)
6 eqid 2823 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 lhp2lt.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 36427 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 ∈ (Base‘𝐾))
10 simp3l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄𝐴)
116, 7atbase 36427 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 ∈ (Base‘𝐾))
13 simp1r 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊𝐻)
14 lhp2lt.h . . . . . 6 𝐻 = (LHyp‘𝐾)
156, 14lhpbase 37136 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1613, 15syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊 ∈ (Base‘𝐾))
17 lhp2lt.l . . . . 5 = (le‘𝐾)
18 lhp2lt.j . . . . 5 = (join‘𝐾)
196, 17, 18latjle12 17674 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
204, 9, 12, 16, 19syl13anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
211, 2, 20mpbi2and 710 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) 𝑊)
2218, 17, 73dim2 36606 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
233, 5, 10, 22syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
24 simp11l 1280 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ HL)
25 hlop 36500 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
2624, 25syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ OP)
2724hllatd 36502 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ Lat)
28 simp12l 1282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑃𝐴)
29 simp13l 1284 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑄𝐴)
306, 18, 7hlatjcl 36505 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3124, 28, 29, 30syl3anc 1367 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ∈ (Base‘𝐾))
32 simp2l 1195 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟𝐴)
336, 7atbase 36427 . . . . . . . . . 10 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟 ∈ (Base‘𝐾))
356, 18latjcl 17663 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
3627, 31, 34, 35syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
37 simp2r 1196 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠𝐴)
386, 7atbase 36427 . . . . . . . . 9 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
3937, 38syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠 ∈ (Base‘𝐾))
406, 18latjcl 17663 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
4127, 36, 39, 40syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
42 eqid 2823 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
43 eqid 2823 . . . . . . . 8 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
446, 42, 43ncvr1 36410 . . . . . . 7 ((𝐾 ∈ OP ∧ (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾)) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
4526, 41, 44syl2anc 586 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
46 eqid 2823 . . . . . . . . . . . 12 (lub‘𝐾) = (lub‘𝐾)
47 simpl1l 1220 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ HL)
4847hllatd 36502 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Lat)
49 simpl2l 1222 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑃𝐴)
50 simpl3l 1224 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑄𝐴)
5147, 49, 50, 30syl3anc 1367 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
52 simpr1l 1226 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟𝐴)
5352, 33syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟 ∈ (Base‘𝐾))
5448, 51, 53, 35syl3anc 1367 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
5547, 25syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ OP)
56 eqid 2823 . . . . . . . . . . . . . . 15 (glb‘𝐾) = (glb‘𝐾)
576, 46, 56op01dm 36321 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → ((Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)))
5857simpld 497 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (Base‘𝐾) ∈ dom (lub‘𝐾))
5955, 58syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (Base‘𝐾) ∈ dom (lub‘𝐾))
606, 46, 17, 42, 47, 54, 59ple1 17656 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) (1.‘𝐾))
61 hlpos 36504 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6247, 61syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Poset)
636, 42op1cl 36323 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
6455, 63syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾) ∈ (Base‘𝐾))
65 simpr2l 1228 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑟 (𝑃 𝑄))
666, 17, 18, 43, 7cvr1 36548 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6747, 51, 52, 66syl3anc 1367 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6865, 67mpbid 234 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟))
69 simpr3 1192 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) = 𝑊)
70 simpl1r 1221 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊𝐻)
7142, 43, 14lhp1cvr 37137 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7247, 70, 71syl2anc 586 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7369, 72eqbrtrd 5090 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))
746, 17, 43cvrcmp 36421 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟) ∧ (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7562, 54, 64, 51, 68, 73, 74syl132anc 1384 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7660, 75mpbid 234 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) = (1.‘𝐾))
77 simpr2r 1229 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑠 ((𝑃 𝑄) 𝑟))
78 simpr1r 1227 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑠𝐴)
796, 17, 18, 43, 7cvr1 36548 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8047, 54, 78, 79syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8177, 80mpbid 234 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
8276, 81eqbrtrrd 5092 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
83823exp2 1350 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))))
84833imp 1107 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8584necon3bd 3032 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠) → (𝑃 𝑄) ≠ 𝑊))
8645, 85mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ≠ 𝑊)
87863exp 1115 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊)))
8887rexlimdvv 3295 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊))
8923, 88mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ≠ 𝑊)
903, 5, 10, 30syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
91 lhp2lt.s . . . 4 < = (lt‘𝐾)
9217, 91pltval 17572 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊𝐻) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
933, 90, 13, 92syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
9421, 89, 93mpbir2and 711 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141   class class class wbr 5068  dom cdm 5557  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  Posetcpo 17552  ltcplt 17553  lubclub 17554  glbcglb 17555  joincjn 17556  1.cp1 17650  Latclat 17657  OPcops 36310  ccvr 36400  Atomscatm 36401  HLchlt 36488  LHypclh 37122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-lhyp 37126
This theorem is referenced by:  lhpexle3lem  37149
  Copyright terms: Public domain W3C validator