Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2lt Structured version   Visualization version   GIF version

Theorem lhp2lt 39983
Description: The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
lhp2lt.l = (le‘𝐾)
lhp2lt.s < = (lt‘𝐾)
lhp2lt.j = (join‘𝐾)
lhp2lt.a 𝐴 = (Atoms‘𝐾)
lhp2lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2lt (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)

Proof of Theorem lhp2lt
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1199 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 𝑊)
2 simp3r 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 𝑊)
3 simp1l 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ HL)
43hllatd 39345 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃𝐴)
6 eqid 2734 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 lhp2lt.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39270 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 ∈ (Base‘𝐾))
10 simp3l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄𝐴)
116, 7atbase 39270 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 ∈ (Base‘𝐾))
13 simp1r 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊𝐻)
14 lhp2lt.h . . . . . 6 𝐻 = (LHyp‘𝐾)
156, 14lhpbase 39980 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1613, 15syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊 ∈ (Base‘𝐾))
17 lhp2lt.l . . . . 5 = (le‘𝐾)
18 lhp2lt.j . . . . 5 = (join‘𝐾)
196, 17, 18latjle12 18507 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
204, 9, 12, 16, 19syl13anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
211, 2, 20mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) 𝑊)
2218, 17, 73dim2 39450 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
233, 5, 10, 22syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
24 simp11l 1283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ HL)
25 hlop 39343 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
2624, 25syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ OP)
2724hllatd 39345 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ Lat)
28 simp12l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑃𝐴)
29 simp13l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑄𝐴)
306, 18, 7hlatjcl 39348 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3124, 28, 29, 30syl3anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ∈ (Base‘𝐾))
32 simp2l 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟𝐴)
336, 7atbase 39270 . . . . . . . . . 10 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟 ∈ (Base‘𝐾))
356, 18latjcl 18496 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
3627, 31, 34, 35syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
37 simp2r 1199 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠𝐴)
386, 7atbase 39270 . . . . . . . . 9 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
3937, 38syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠 ∈ (Base‘𝐾))
406, 18latjcl 18496 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
4127, 36, 39, 40syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
42 eqid 2734 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
43 eqid 2734 . . . . . . . 8 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
446, 42, 43ncvr1 39253 . . . . . . 7 ((𝐾 ∈ OP ∧ (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾)) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
4526, 41, 44syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
46 eqid 2734 . . . . . . . . . . . 12 (lub‘𝐾) = (lub‘𝐾)
47 simpl1l 1223 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ HL)
4847hllatd 39345 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Lat)
49 simpl2l 1225 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑃𝐴)
50 simpl3l 1227 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑄𝐴)
5147, 49, 50, 30syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
52 simpr1l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟𝐴)
5352, 33syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟 ∈ (Base‘𝐾))
5448, 51, 53, 35syl3anc 1370 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
5547, 25syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ OP)
56 eqid 2734 . . . . . . . . . . . . . . 15 (glb‘𝐾) = (glb‘𝐾)
576, 46, 56op01dm 39164 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → ((Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)))
5857simpld 494 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (Base‘𝐾) ∈ dom (lub‘𝐾))
5955, 58syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (Base‘𝐾) ∈ dom (lub‘𝐾))
606, 46, 17, 42, 47, 54, 59ple1 18487 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) (1.‘𝐾))
61 hlpos 39347 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6247, 61syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Poset)
636, 42op1cl 39166 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
6455, 63syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾) ∈ (Base‘𝐾))
65 simpr2l 1231 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑟 (𝑃 𝑄))
666, 17, 18, 43, 7cvr1 39392 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6747, 51, 52, 66syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6865, 67mpbid 232 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟))
69 simpr3 1195 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) = 𝑊)
70 simpl1r 1224 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊𝐻)
7142, 43, 14lhp1cvr 39981 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7247, 70, 71syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7369, 72eqbrtrd 5169 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))
746, 17, 43cvrcmp 39264 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟) ∧ (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7562, 54, 64, 51, 68, 73, 74syl132anc 1387 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7660, 75mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) = (1.‘𝐾))
77 simpr2r 1232 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑠 ((𝑃 𝑄) 𝑟))
78 simpr1r 1230 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑠𝐴)
796, 17, 18, 43, 7cvr1 39392 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8047, 54, 78, 79syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8177, 80mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
8276, 81eqbrtrrd 5171 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
83823exp2 1353 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))))
84833imp 1110 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8584necon3bd 2951 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠) → (𝑃 𝑄) ≠ 𝑊))
8645, 85mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ≠ 𝑊)
87863exp 1118 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊)))
8887rexlimdvv 3209 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊))
8923, 88mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ≠ 𝑊)
903, 5, 10, 30syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
91 lhp2lt.s . . . 4 < = (lt‘𝐾)
9217, 91pltval 18389 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊𝐻) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
933, 90, 13, 92syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
9421, 89, 93mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067   class class class wbr 5147  dom cdm 5688  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  Posetcpo 18364  ltcplt 18365  lubclub 18366  glbcglb 18367  joincjn 18368  1.cp1 18481  Latclat 18488  OPcops 39153  ccvr 39243  Atomscatm 39244  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-lhyp 39970
This theorem is referenced by:  lhpexle3lem  39993
  Copyright terms: Public domain W3C validator