Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2lt Structured version   Visualization version   GIF version

Theorem lhp2lt 39980
Description: The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
lhp2lt.l = (le‘𝐾)
lhp2lt.s < = (lt‘𝐾)
lhp2lt.j = (join‘𝐾)
lhp2lt.a 𝐴 = (Atoms‘𝐾)
lhp2lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2lt (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)

Proof of Theorem lhp2lt
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 𝑊)
2 simp3r 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 𝑊)
3 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ HL)
43hllatd 39343 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃𝐴)
6 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 lhp2lt.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39268 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑃 ∈ (Base‘𝐾))
10 simp3l 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄𝐴)
116, 7atbase 39268 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑄 ∈ (Base‘𝐾))
13 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊𝐻)
14 lhp2lt.h . . . . . 6 𝐻 = (LHyp‘𝐾)
156, 14lhpbase 39977 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1613, 15syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → 𝑊 ∈ (Base‘𝐾))
17 lhp2lt.l . . . . 5 = (le‘𝐾)
18 lhp2lt.j . . . . 5 = (join‘𝐾)
196, 17, 18latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
204, 9, 12, 16, 19syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
211, 2, 20mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) 𝑊)
2218, 17, 73dim2 39447 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
233, 5, 10, 22syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
24 simp11l 1285 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ HL)
25 hlop 39341 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
2624, 25syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ OP)
2724hllatd 39343 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝐾 ∈ Lat)
28 simp12l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑃𝐴)
29 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑄𝐴)
306, 18, 7hlatjcl 39346 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3124, 28, 29, 30syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ∈ (Base‘𝐾))
32 simp2l 1200 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟𝐴)
336, 7atbase 39268 . . . . . . . . . 10 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑟 ∈ (Base‘𝐾))
356, 18latjcl 18345 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
3627, 31, 34, 35syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
37 simp2r 1201 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠𝐴)
386, 7atbase 39268 . . . . . . . . 9 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
3937, 38syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → 𝑠 ∈ (Base‘𝐾))
406, 18latjcl 18345 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
4127, 36, 39, 40syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾))
42 eqid 2729 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
43 eqid 2729 . . . . . . . 8 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
446, 42, 43ncvr1 39251 . . . . . . 7 ((𝐾 ∈ OP ∧ (((𝑃 𝑄) 𝑟) 𝑠) ∈ (Base‘𝐾)) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
4526, 41, 44syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
46 eqid 2729 . . . . . . . . . . . 12 (lub‘𝐾) = (lub‘𝐾)
47 simpl1l 1225 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ HL)
4847hllatd 39343 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Lat)
49 simpl2l 1227 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑃𝐴)
50 simpl3l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑄𝐴)
5147, 49, 50, 30syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
52 simpr1l 1231 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟𝐴)
5352, 33syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑟 ∈ (Base‘𝐾))
5448, 51, 53, 35syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾))
5547, 25syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ OP)
56 eqid 2729 . . . . . . . . . . . . . . 15 (glb‘𝐾) = (glb‘𝐾)
576, 46, 56op01dm 39162 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → ((Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)))
5857simpld 494 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (Base‘𝐾) ∈ dom (lub‘𝐾))
5955, 58syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (Base‘𝐾) ∈ dom (lub‘𝐾))
606, 46, 17, 42, 47, 54, 59ple1 18334 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) (1.‘𝐾))
61 hlpos 39345 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6247, 61syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝐾 ∈ Poset)
636, 42op1cl 39164 . . . . . . . . . . . . 13 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
6455, 63syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾) ∈ (Base‘𝐾))
65 simpr2l 1233 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑟 (𝑃 𝑄))
666, 17, 18, 43, 7cvr1 39389 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6747, 51, 52, 66syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑟 (𝑃 𝑄) ↔ (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟)))
6865, 67mpbid 232 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟))
69 simpr3 1197 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄) = 𝑊)
70 simpl1r 1226 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊𝐻)
7142, 43, 14lhp1cvr 39978 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7247, 70, 71syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
7369, 72eqbrtrd 5114 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))
746, 17, 43cvrcmp 39262 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄)( ⋖ ‘𝐾)((𝑃 𝑄) 𝑟) ∧ (𝑃 𝑄)( ⋖ ‘𝐾)(1.‘𝐾))) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7562, 54, 64, 51, 68, 73, 74syl132anc 1390 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (((𝑃 𝑄) 𝑟) (1.‘𝐾) ↔ ((𝑃 𝑄) 𝑟) = (1.‘𝐾)))
7660, 75mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟) = (1.‘𝐾))
77 simpr2r 1234 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ¬ 𝑠 ((𝑃 𝑄) 𝑟))
78 simpr1r 1232 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → 𝑠𝐴)
796, 17, 18, 43, 7cvr1 39389 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑃 𝑄) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8047, 54, 78, 79syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8177, 80mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → ((𝑃 𝑄) 𝑟)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
8276, 81eqbrtrrd 5116 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ ((𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ∧ (𝑃 𝑄) = 𝑊)) → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠))
83823exp2 1355 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))))
84833imp 1110 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → ((𝑃 𝑄) = 𝑊 → (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠)))
8584necon3bd 2939 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (¬ (1.‘𝐾)( ⋖ ‘𝐾)(((𝑃 𝑄) 𝑟) 𝑠) → (𝑃 𝑄) ≠ 𝑊))
8645, 85mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) ∧ (𝑟𝐴𝑠𝐴) ∧ (¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))) → (𝑃 𝑄) ≠ 𝑊)
87863exp 1119 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑟𝐴𝑠𝐴) → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊)))
8887rexlimdvv 3185 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) → (𝑃 𝑄) ≠ 𝑊))
8923, 88mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ≠ 𝑊)
903, 5, 10, 30syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
91 lhp2lt.s . . . 4 < = (lt‘𝐾)
9217, 91pltval 18236 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊𝐻) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
933, 90, 13, 92syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → ((𝑃 𝑄) < 𝑊 ↔ ((𝑃 𝑄) 𝑊 ∧ (𝑃 𝑄) ≠ 𝑊)))
9421, 89, 93mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  dom cdm 5619  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  Posetcpo 18213  ltcplt 18214  lubclub 18215  glbcglb 18216  joincjn 18217  1.cp1 18328  Latclat 18337  OPcops 39151  ccvr 39241  Atomscatm 39242  HLchlt 39329  LHypclh 39963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-lhyp 39967
This theorem is referenced by:  lhpexle3lem  39990
  Copyright terms: Public domain W3C validator