Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op0le Structured version   Visualization version   GIF version

Theorem op0le 39187
Description: Orthoposet zero is less than or equal to any element. (ch0le 31460 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
op0le ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)

Proof of Theorem op0le
StepHypRef Expression
1 op0le.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2737 . 2 (glb‘𝐾) = (glb‘𝐾)
3 op0le.l . 2 = (le‘𝐾)
4 op0le.z . 2 0 = (0.‘𝐾)
5 simpl 482 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 simpr 484 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2737 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
81, 7, 2op01dm 39184 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
98simprd 495 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾))
109adantr 480 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐵 ∈ dom (glb‘𝐾))
111, 2, 3, 4, 5, 6, 10p0le 18474 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  dom cdm 5685  cfv 6561  Basecbs 17247  lecple 17304  lubclub 18355  glbcglb 18356  0.cp0 18468  OPcops 39173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-glb 18392  df-p0 18470  df-oposet 39177
This theorem is referenced by:  ople0  39188  opnlen0  39189  lub0N  39190  opltn0  39191  olj01  39226  olm01  39237  leatb  39293  1cvratex  39475  llnn0  39518  lplnn0N  39549  lvoln0N  39593  dalemcea  39662  ltrnatb  40139  tendo0tp  40791  cdlemk39s-id  40942  dia0eldmN  41042  dib0  41166  dih0  41282  dihmeetlem18N  41326
  Copyright terms: Public domain W3C validator