Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op0le Structured version   Visualization version   GIF version

Theorem op0le 39152
Description: Orthoposet zero is less than or equal to any element. (ch0le 31343 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
op0le ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)

Proof of Theorem op0le
StepHypRef Expression
1 op0le.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2729 . 2 (glb‘𝐾) = (glb‘𝐾)
3 op0le.l . 2 = (le‘𝐾)
4 op0le.z . 2 0 = (0.‘𝐾)
5 simpl 482 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 simpr 484 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2729 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
81, 7, 2op01dm 39149 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
98simprd 495 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾))
109adantr 480 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐵 ∈ dom (glb‘𝐾))
111, 2, 3, 4, 5, 6, 10p0le 18364 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  dom cdm 5631  cfv 6499  Basecbs 17155  lecple 17203  lubclub 18246  glbcglb 18247  0.cp0 18358  OPcops 39138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-glb 18282  df-p0 18360  df-oposet 39142
This theorem is referenced by:  ople0  39153  opnlen0  39154  lub0N  39155  opltn0  39156  olj01  39191  olm01  39202  leatb  39258  1cvratex  39440  llnn0  39483  lplnn0N  39514  lvoln0N  39558  dalemcea  39627  ltrnatb  40104  tendo0tp  40756  cdlemk39s-id  40907  dia0eldmN  41007  dib0  41131  dih0  41247  dihmeetlem18N  41291
  Copyright terms: Public domain W3C validator