Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op0le Structured version   Visualization version   GIF version

Theorem op0le 39179
Description: Orthoposet zero is less than or equal to any element. (ch0le 31370 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
op0le ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)

Proof of Theorem op0le
StepHypRef Expression
1 op0le.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2729 . 2 (glb‘𝐾) = (glb‘𝐾)
3 op0le.l . 2 = (le‘𝐾)
4 op0le.z . 2 0 = (0.‘𝐾)
5 simpl 482 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 simpr 484 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2729 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
81, 7, 2op01dm 39176 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
98simprd 495 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾))
109adantr 480 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐵 ∈ dom (glb‘𝐾))
111, 2, 3, 4, 5, 6, 10p0le 18388 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  dom cdm 5638  cfv 6511  Basecbs 17179  lecple 17227  lubclub 18270  glbcglb 18271  0.cp0 18382  OPcops 39165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-glb 18306  df-p0 18384  df-oposet 39169
This theorem is referenced by:  ople0  39180  opnlen0  39181  lub0N  39182  opltn0  39183  olj01  39218  olm01  39229  leatb  39285  1cvratex  39467  llnn0  39510  lplnn0N  39541  lvoln0N  39585  dalemcea  39654  ltrnatb  40131  tendo0tp  40783  cdlemk39s-id  40934  dia0eldmN  41034  dib0  41158  dih0  41274  dihmeetlem18N  41318
  Copyright terms: Public domain W3C validator