| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0le | Structured version Visualization version GIF version | ||
| Description: Orthoposet zero is less than or equal to any element. (ch0le 31421 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0le.l | ⊢ ≤ = (le‘𝐾) |
| op0le.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0le | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0le.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . 2 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0le.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 4 | op0le.z | . 2 ⊢ 0 = (0.‘𝐾) | |
| 5 | simpl 482 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) | |
| 6 | simpr 484 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 8 | 1, 7, 2 | op01dm 39230 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 9 | 8 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ dom (glb‘𝐾)) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | p0le 18333 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 Basecbs 17120 lecple 17168 lubclub 18215 glbcglb 18216 0.cp0 18327 OPcops 39219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-glb 18251 df-p0 18329 df-oposet 39223 |
| This theorem is referenced by: ople0 39234 opnlen0 39235 lub0N 39236 opltn0 39237 olj01 39272 olm01 39283 leatb 39339 1cvratex 39520 llnn0 39563 lplnn0N 39594 lvoln0N 39638 dalemcea 39707 ltrnatb 40184 tendo0tp 40836 cdlemk39s-id 40987 dia0eldmN 41087 dib0 41211 dih0 41327 dihmeetlem18N 41371 |
| Copyright terms: Public domain | W3C validator |