| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0le | Structured version Visualization version GIF version | ||
| Description: Orthoposet zero is less than or equal to any element. (ch0le 31377 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0le.l | ⊢ ≤ = (le‘𝐾) |
| op0le.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0le | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0le.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . 2 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0le.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 4 | op0le.z | . 2 ⊢ 0 = (0.‘𝐾) | |
| 5 | simpl 482 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) | |
| 6 | simpr 484 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2730 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 8 | 1, 7, 2 | op01dm 39183 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 9 | 8 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ dom (glb‘𝐾)) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | p0le 18395 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lecple 17234 lubclub 18277 glbcglb 18278 0.cp0 18389 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-glb 18313 df-p0 18391 df-oposet 39176 |
| This theorem is referenced by: ople0 39187 opnlen0 39188 lub0N 39189 opltn0 39190 olj01 39225 olm01 39236 leatb 39292 1cvratex 39474 llnn0 39517 lplnn0N 39548 lvoln0N 39592 dalemcea 39661 ltrnatb 40138 tendo0tp 40790 cdlemk39s-id 40941 dia0eldmN 41041 dib0 41165 dih0 41281 dihmeetlem18N 41325 |
| Copyright terms: Public domain | W3C validator |