Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op0le Structured version   Visualization version   GIF version

Theorem op0le 38788
Description: Orthoposet zero is less than or equal to any element. (ch0le 31323 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
op0le ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)

Proof of Theorem op0le
StepHypRef Expression
1 op0le.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2725 . 2 (glb‘𝐾) = (glb‘𝐾)
3 op0le.l . 2 = (le‘𝐾)
4 op0le.z . 2 0 = (0.‘𝐾)
5 simpl 481 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 simpr 483 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2725 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
81, 7, 2op01dm 38785 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
98simprd 494 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾))
109adantr 479 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐵 ∈ dom (glb‘𝐾))
111, 2, 3, 4, 5, 6, 10p0le 18424 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5149  dom cdm 5678  cfv 6549  Basecbs 17183  lecple 17243  lubclub 18304  glbcglb 18305  0.cp0 18418  OPcops 38774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-glb 18342  df-p0 18420  df-oposet 38778
This theorem is referenced by:  ople0  38789  opnlen0  38790  lub0N  38791  opltn0  38792  olj01  38827  olm01  38838  leatb  38894  1cvratex  39076  llnn0  39119  lplnn0N  39150  lvoln0N  39194  dalemcea  39263  ltrnatb  39740  tendo0tp  40392  cdlemk39s-id  40543  dia0eldmN  40643  dib0  40767  dih0  40883  dihmeetlem18N  40927
  Copyright terms: Public domain W3C validator