| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0le | Structured version Visualization version GIF version | ||
| Description: Orthoposet zero is less than or equal to any element. (ch0le 31343 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0le.l | ⊢ ≤ = (le‘𝐾) |
| op0le.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0le | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0le.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . 2 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0le.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 4 | op0le.z | . 2 ⊢ 0 = (0.‘𝐾) | |
| 5 | simpl 482 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) | |
| 6 | simpr 484 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 8 | 1, 7, 2 | op01dm 39149 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 9 | 8 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ dom (glb‘𝐾)) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | p0le 18364 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 Basecbs 17155 lecple 17203 lubclub 18246 glbcglb 18247 0.cp0 18358 OPcops 39138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-glb 18282 df-p0 18360 df-oposet 39142 |
| This theorem is referenced by: ople0 39153 opnlen0 39154 lub0N 39155 opltn0 39156 olj01 39191 olm01 39202 leatb 39258 1cvratex 39440 llnn0 39483 lplnn0N 39514 lvoln0N 39558 dalemcea 39627 ltrnatb 40104 tendo0tp 40756 cdlemk39s-id 40907 dia0eldmN 41007 dib0 41131 dih0 41247 dihmeetlem18N 41291 |
| Copyright terms: Public domain | W3C validator |