| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a zero element. (h0elch 31170 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0cl.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2734 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | p0val 18424 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2734 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | 1, 6, 2 | op01dm 39130 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 9 | 1, 2, 5, 8 | glbcl 18367 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2833 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 dom cdm 5652 ‘cfv 6528 Basecbs 17215 lubclub 18308 glbcglb 18309 0.cp0 18420 OPcops 39119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-glb 18344 df-p0 18422 df-oposet 39123 |
| This theorem is referenced by: ople0 39134 lub0N 39136 opltn0 39137 opoc1 39149 opoc0 39150 olj01 39172 olj02 39173 olm01 39183 olm02 39184 0ltat 39238 leatb 39239 hlhgt2 39337 hl0lt1N 39338 hl2at 39353 atcvr0eq 39374 lnnat 39375 atle 39384 athgt 39404 1cvratex 39421 ps-2 39426 dalemcea 39608 pmapeq0 39714 2atm2atN 39733 lhp0lt 39951 lhpn0 39952 ltrnatb 40085 cdleme3c 40178 cdleme7e 40195 dia0eldmN 40988 dia2dimlem2 41013 dia2dimlem3 41014 dib0 41112 dih0 41228 dih0bN 41229 dih0rn 41232 dihlspsnssN 41280 dihlspsnat 41281 dihatexv 41286 |
| Copyright terms: Public domain | W3C validator |