Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op0cl Structured version   Visualization version   GIF version

Theorem op0cl 39184
Description: An orthoposet has a zero element. (h0elch 31191 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
op0cl.b 𝐵 = (Base‘𝐾)
op0cl.z 0 = (0.‘𝐾)
Assertion
Ref Expression
op0cl (𝐾 ∈ OP → 0𝐵)

Proof of Theorem op0cl
StepHypRef Expression
1 op0cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2730 . . 3 (glb‘𝐾) = (glb‘𝐾)
3 op0cl.z . . 3 0 = (0.‘𝐾)
41, 2, 3p0val 18393 . 2 (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 eqid 2730 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
71, 6, 2op01dm 39183 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
87simprd 495 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾))
91, 2, 5, 8glbcl 18336 . 2 (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵)
104, 9eqeltrd 2829 1 (𝐾 ∈ OP → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  dom cdm 5641  cfv 6514  Basecbs 17186  lubclub 18277  glbcglb 18278  0.cp0 18389  OPcops 39172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-glb 18313  df-p0 18391  df-oposet 39176
This theorem is referenced by:  ople0  39187  lub0N  39189  opltn0  39190  opoc1  39202  opoc0  39203  olj01  39225  olj02  39226  olm01  39236  olm02  39237  0ltat  39291  leatb  39292  hlhgt2  39390  hl0lt1N  39391  hl2at  39406  atcvr0eq  39427  lnnat  39428  atle  39437  athgt  39457  1cvratex  39474  ps-2  39479  dalemcea  39661  pmapeq0  39767  2atm2atN  39786  lhp0lt  40004  lhpn0  40005  ltrnatb  40138  cdleme3c  40231  cdleme7e  40248  dia0eldmN  41041  dia2dimlem2  41066  dia2dimlem3  41067  dib0  41165  dih0  41281  dih0bN  41282  dih0rn  41285  dihlspsnssN  41333  dihlspsnat  41334  dihatexv  41339
  Copyright terms: Public domain W3C validator