![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version |
Description: An orthoposet has a zero element. (h0elch 30495 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
op0cl.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2732 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | p0val 18376 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
6 | eqid 2732 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
7 | 1, 6, 2 | op01dm 38041 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
8 | 7 | simprd 496 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
9 | 1, 2, 5, 8 | glbcl 18319 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
10 | 4, 9 | eqeltrd 2833 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 dom cdm 5675 ‘cfv 6540 Basecbs 17140 lubclub 18258 glbcglb 18259 0.cp0 18372 OPcops 38030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-glb 18296 df-p0 18374 df-oposet 38034 |
This theorem is referenced by: ople0 38045 lub0N 38047 opltn0 38048 opoc1 38060 opoc0 38061 olj01 38083 olj02 38084 olm01 38094 olm02 38095 0ltat 38149 leatb 38150 hlhgt2 38248 hl0lt1N 38249 hl2at 38264 atcvr0eq 38285 lnnat 38286 atle 38295 athgt 38315 1cvratex 38332 ps-2 38337 dalemcea 38519 pmapeq0 38625 2atm2atN 38644 lhp0lt 38862 lhpn0 38863 ltrnatb 38996 cdleme3c 39089 cdleme7e 39106 dia0eldmN 39899 dia2dimlem2 39924 dia2dimlem3 39925 dib0 40023 dih0 40139 dih0bN 40140 dih0rn 40143 dihlspsnssN 40191 dihlspsnat 40192 dihatexv 40197 |
Copyright terms: Public domain | W3C validator |