Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version |
Description: An orthoposet has a zero element. (h0elch 29182 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
op0cl.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | p0val 17760 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
6 | eqid 2738 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
7 | 1, 6, 2 | op01dm 36809 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
8 | 7 | simprd 499 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
9 | 1, 2, 5, 8 | glbcl 17717 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
10 | 4, 9 | eqeltrd 2833 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 dom cdm 5519 ‘cfv 6333 Basecbs 16579 lubclub 17661 glbcglb 17662 0.cp0 17756 OPcops 36798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-glb 17694 df-p0 17758 df-oposet 36802 |
This theorem is referenced by: ople0 36813 lub0N 36815 opltn0 36816 opoc1 36828 opoc0 36829 olj01 36851 olj02 36852 olm01 36862 olm02 36863 0ltat 36917 leatb 36918 hlhgt2 37015 hl0lt1N 37016 hl2at 37031 atcvr0eq 37052 lnnat 37053 atle 37062 athgt 37082 1cvratex 37099 ps-2 37104 dalemcea 37286 pmapeq0 37392 2atm2atN 37411 lhp0lt 37629 lhpn0 37630 ltrnatb 37763 cdleme3c 37856 cdleme7e 37873 dia0eldmN 38666 dia2dimlem2 38691 dia2dimlem3 38692 dib0 38790 dih0 38906 dih0bN 38907 dih0rn 38910 dihlspsnssN 38958 dihlspsnat 38959 dihatexv 38964 |
Copyright terms: Public domain | W3C validator |