Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version |
Description: An orthoposet has a zero element. (h0elch 29518 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
op0cl.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | p0val 18060 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
6 | eqid 2738 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
7 | 1, 6, 2 | op01dm 37124 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
8 | 7 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
9 | 1, 2, 5, 8 | glbcl 18003 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
10 | 4, 9 | eqeltrd 2839 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lubclub 17942 glbcglb 17943 0.cp0 18056 OPcops 37113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-glb 17980 df-p0 18058 df-oposet 37117 |
This theorem is referenced by: ople0 37128 lub0N 37130 opltn0 37131 opoc1 37143 opoc0 37144 olj01 37166 olj02 37167 olm01 37177 olm02 37178 0ltat 37232 leatb 37233 hlhgt2 37330 hl0lt1N 37331 hl2at 37346 atcvr0eq 37367 lnnat 37368 atle 37377 athgt 37397 1cvratex 37414 ps-2 37419 dalemcea 37601 pmapeq0 37707 2atm2atN 37726 lhp0lt 37944 lhpn0 37945 ltrnatb 38078 cdleme3c 38171 cdleme7e 38188 dia0eldmN 38981 dia2dimlem2 39006 dia2dimlem3 39007 dib0 39105 dih0 39221 dih0bN 39222 dih0rn 39225 dihlspsnssN 39273 dihlspsnat 39274 dihatexv 39279 |
Copyright terms: Public domain | W3C validator |