| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a zero element. (h0elch 31191 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0cl.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | p0val 18393 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | 1, 6, 2 | op01dm 39183 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 9 | 1, 2, 5, 8 | glbcl 18336 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2829 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lubclub 18277 glbcglb 18278 0.cp0 18389 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-glb 18313 df-p0 18391 df-oposet 39176 |
| This theorem is referenced by: ople0 39187 lub0N 39189 opltn0 39190 opoc1 39202 opoc0 39203 olj01 39225 olj02 39226 olm01 39236 olm02 39237 0ltat 39291 leatb 39292 hlhgt2 39390 hl0lt1N 39391 hl2at 39406 atcvr0eq 39427 lnnat 39428 atle 39437 athgt 39457 1cvratex 39474 ps-2 39479 dalemcea 39661 pmapeq0 39767 2atm2atN 39786 lhp0lt 40004 lhpn0 40005 ltrnatb 40138 cdleme3c 40231 cdleme7e 40248 dia0eldmN 41041 dia2dimlem2 41066 dia2dimlem3 41067 dib0 41165 dih0 41281 dih0bN 41282 dih0rn 41285 dihlspsnssN 41333 dihlspsnat 41334 dihatexv 41339 |
| Copyright terms: Public domain | W3C validator |