| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a zero element. (h0elch 31157 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0cl.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | p0val 18362 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | 1, 6, 2 | op01dm 39149 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 9 | 1, 2, 5, 8 | glbcl 18305 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2828 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5631 ‘cfv 6499 Basecbs 17155 lubclub 18246 glbcglb 18247 0.cp0 18358 OPcops 39138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-glb 18282 df-p0 18360 df-oposet 39142 |
| This theorem is referenced by: ople0 39153 lub0N 39155 opltn0 39156 opoc1 39168 opoc0 39169 olj01 39191 olj02 39192 olm01 39202 olm02 39203 0ltat 39257 leatb 39258 hlhgt2 39356 hl0lt1N 39357 hl2at 39372 atcvr0eq 39393 lnnat 39394 atle 39403 athgt 39423 1cvratex 39440 ps-2 39445 dalemcea 39627 pmapeq0 39733 2atm2atN 39752 lhp0lt 39970 lhpn0 39971 ltrnatb 40104 cdleme3c 40197 cdleme7e 40214 dia0eldmN 41007 dia2dimlem2 41032 dia2dimlem3 41033 dib0 41131 dih0 41247 dih0bN 41248 dih0rn 41251 dihlspsnssN 41299 dihlspsnat 41300 dihatexv 41305 |
| Copyright terms: Public domain | W3C validator |