| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a zero element. (h0elch 31199 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0cl.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | p0val 18331 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | 1, 6, 2 | op01dm 39166 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 9 | 1, 2, 5, 8 | glbcl 18274 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2828 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5619 ‘cfv 6482 Basecbs 17120 lubclub 18215 glbcglb 18216 0.cp0 18327 OPcops 39155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-glb 18251 df-p0 18329 df-oposet 39159 |
| This theorem is referenced by: ople0 39170 lub0N 39172 opltn0 39173 opoc1 39185 opoc0 39186 olj01 39208 olj02 39209 olm01 39219 olm02 39220 0ltat 39274 leatb 39275 hlhgt2 39372 hl0lt1N 39373 hl2at 39388 atcvr0eq 39409 lnnat 39410 atle 39419 athgt 39439 1cvratex 39456 ps-2 39461 dalemcea 39643 pmapeq0 39749 2atm2atN 39768 lhp0lt 39986 lhpn0 39987 ltrnatb 40120 cdleme3c 40213 cdleme7e 40230 dia0eldmN 41023 dia2dimlem2 41048 dia2dimlem3 41049 dib0 41147 dih0 41263 dih0bN 41264 dih0rn 41267 dihlspsnssN 41315 dihlspsnat 41316 dihatexv 41321 |
| Copyright terms: Public domain | W3C validator |