| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op0cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a zero element. (h0elch 31236 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0cl.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| op0cl | ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | op0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | p0val 18437 | . 2 ⊢ (𝐾 ∈ OP → 0 = ((glb‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | 1, 6, 2 | op01dm 39201 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (glb‘𝐾)) |
| 9 | 1, 2, 5, 8 | glbcl 18380 | . 2 ⊢ (𝐾 ∈ OP → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2834 | 1 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 dom cdm 5654 ‘cfv 6531 Basecbs 17228 lubclub 18321 glbcglb 18322 0.cp0 18433 OPcops 39190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-glb 18357 df-p0 18435 df-oposet 39194 |
| This theorem is referenced by: ople0 39205 lub0N 39207 opltn0 39208 opoc1 39220 opoc0 39221 olj01 39243 olj02 39244 olm01 39254 olm02 39255 0ltat 39309 leatb 39310 hlhgt2 39408 hl0lt1N 39409 hl2at 39424 atcvr0eq 39445 lnnat 39446 atle 39455 athgt 39475 1cvratex 39492 ps-2 39497 dalemcea 39679 pmapeq0 39785 2atm2atN 39804 lhp0lt 40022 lhpn0 40023 ltrnatb 40156 cdleme3c 40249 cdleme7e 40266 dia0eldmN 41059 dia2dimlem2 41084 dia2dimlem3 41085 dib0 41183 dih0 41299 dih0bN 41300 dih0rn 41303 dihlspsnssN 41351 dihlspsnat 41352 dihatexv 41357 |
| Copyright terms: Public domain | W3C validator |