Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op1cl Structured version   Visualization version   GIF version

Theorem op1cl 38360
Description: An orthoposet has a unity element. (helch 30761 analog.) (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
op1cl.b 𝐵 = (Base‘𝐾)
op1cl.u 1 = (1.‘𝐾)
Assertion
Ref Expression
op1cl (𝐾 ∈ OP → 1𝐵)

Proof of Theorem op1cl
StepHypRef Expression
1 op1cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2730 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 op1cl.u . . 3 1 = (1.‘𝐾)
41, 2, 3p1val 18387 . 2 (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 eqid 2730 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
71, 2, 6op01dm 38358 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
87simpld 493 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾))
91, 2, 5, 8lubcl 18316 . 2 (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵)
104, 9eqeltrd 2831 1 (𝐾 ∈ OP → 1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  dom cdm 5677  cfv 6544  Basecbs 17150  lubclub 18268  glbcglb 18269  1.cp1 18383  OPcops 38347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-lub 18305  df-p1 18385  df-oposet 38351
This theorem is referenced by:  op1le  38367  glb0N  38368  opoc1  38377  opoc0  38378  olm11  38402  olm12  38403  ncvr1  38447  hlhgt2  38565  hl0lt1N  38566  hl2at  38581  athgt  38632  1cvrco  38648  1cvrjat  38651  pmap1N  38943  pol1N  39086  lhp2lt  39177  lhpexnle  39182  dih1  40462  dih1rn  40463  dih1cnv  40464  dihglb2  40518  dochocss  40542  dihjatc  40593
  Copyright terms: Public domain W3C validator