Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > op1cl | Structured version Visualization version GIF version |
Description: An orthoposet has a unit element. (helch 29178 analog.) (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
op1cl.b | ⊢ 𝐵 = (Base‘𝐾) |
op1cl.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
op1cl | ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | op1cl.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
4 | 1, 2, 3 | p1val 17768 | . 2 ⊢ (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵)) |
5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
6 | eqid 2738 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
7 | 1, 2, 6 | op01dm 36820 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
8 | 7 | simpld 498 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾)) |
9 | 1, 2, 5, 8 | lubcl 17711 | . 2 ⊢ (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵) |
10 | 4, 9 | eqeltrd 2833 | 1 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 dom cdm 5525 ‘cfv 6339 Basecbs 16586 lubclub 17668 glbcglb 17669 1.cp1 17764 OPcops 36809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-lub 17700 df-p1 17766 df-oposet 36813 |
This theorem is referenced by: op1le 36829 glb0N 36830 opoc1 36839 opoc0 36840 olm11 36864 olm12 36865 ncvr1 36909 hlhgt2 37026 hl0lt1N 37027 hl2at 37042 athgt 37093 1cvrco 37109 1cvrjat 37112 pmap1N 37404 pol1N 37547 lhp2lt 37638 lhpexnle 37643 dih1 38923 dih1rn 38924 dih1cnv 38925 dihglb2 38979 dochocss 39003 dihjatc 39054 |
Copyright terms: Public domain | W3C validator |