Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op1cl Structured version   Visualization version   GIF version

Theorem op1cl 39171
Description: An orthoposet has a unity element. (helch 31222 analog.) (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
op1cl.b 𝐵 = (Base‘𝐾)
op1cl.u 1 = (1.‘𝐾)
Assertion
Ref Expression
op1cl (𝐾 ∈ OP → 1𝐵)

Proof of Theorem op1cl
StepHypRef Expression
1 op1cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 op1cl.u . . 3 1 = (1.‘𝐾)
41, 2, 3p1val 18367 . 2 (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 eqid 2729 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
71, 2, 6op01dm 39169 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
87simpld 494 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾))
91, 2, 5, 8lubcl 18296 . 2 (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵)
104, 9eqeltrd 2828 1 (𝐾 ∈ OP → 1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  dom cdm 5631  cfv 6499  Basecbs 17155  lubclub 18250  glbcglb 18251  1.cp1 18363  OPcops 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-lub 18285  df-p1 18365  df-oposet 39162
This theorem is referenced by:  op1le  39178  glb0N  39179  opoc1  39188  opoc0  39189  olm11  39213  olm12  39214  ncvr1  39258  hlhgt2  39376  hl0lt1N  39377  hl2at  39392  athgt  39443  1cvrco  39459  1cvrjat  39462  pmap1N  39754  pol1N  39897  lhp2lt  39988  lhpexnle  39993  dih1  41273  dih1rn  41274  dih1cnv  41275  dihglb2  41329  dochocss  41353  dihjatc  41404
  Copyright terms: Public domain W3C validator