| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op1cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a unity element. (helch 31223 analog.) (Contributed by NM, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| op1cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op1cl.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| op1cl | ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | op1cl.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 4 | 1, 2, 3 | p1val 18332 | . 2 ⊢ (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 7 | 1, 2, 6 | op01dm 39292 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾)) |
| 9 | 1, 2, 5, 8 | lubcl 18261 | . 2 ⊢ (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2831 | 1 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 dom cdm 5614 ‘cfv 6481 Basecbs 17120 lubclub 18215 glbcglb 18216 1.cp1 18328 OPcops 39281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-lub 18250 df-p1 18330 df-oposet 39285 |
| This theorem is referenced by: op1le 39301 glb0N 39302 opoc1 39311 opoc0 39312 olm11 39336 olm12 39337 ncvr1 39381 hlhgt2 39498 hl0lt1N 39499 hl2at 39514 athgt 39565 1cvrco 39581 1cvrjat 39584 pmap1N 39876 pol1N 40019 lhp2lt 40110 lhpexnle 40115 dih1 41395 dih1rn 41396 dih1cnv 41397 dihglb2 41451 dochocss 41475 dihjatc 41526 |
| Copyright terms: Public domain | W3C validator |