| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op1cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a unity element. (helch 31222 analog.) (Contributed by NM, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| op1cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op1cl.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| op1cl | ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | op1cl.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 4 | 1, 2, 3 | p1val 18367 | . 2 ⊢ (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 7 | 1, 2, 6 | op01dm 39169 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾)) |
| 9 | 1, 2, 5, 8 | lubcl 18296 | . 2 ⊢ (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2828 | 1 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5631 ‘cfv 6499 Basecbs 17155 lubclub 18250 glbcglb 18251 1.cp1 18363 OPcops 39158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-lub 18285 df-p1 18365 df-oposet 39162 |
| This theorem is referenced by: op1le 39178 glb0N 39179 opoc1 39188 opoc0 39189 olm11 39213 olm12 39214 ncvr1 39258 hlhgt2 39376 hl0lt1N 39377 hl2at 39392 athgt 39443 1cvrco 39459 1cvrjat 39462 pmap1N 39754 pol1N 39897 lhp2lt 39988 lhpexnle 39993 dih1 41273 dih1rn 41274 dih1cnv 41275 dihglb2 41329 dochocss 41353 dihjatc 41404 |
| Copyright terms: Public domain | W3C validator |