![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > op1cl | Structured version Visualization version GIF version |
Description: An orthoposet has a unity element. (helch 31125 analog.) (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
op1cl.b | ⊢ 𝐵 = (Base‘𝐾) |
op1cl.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
op1cl | ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2725 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | op1cl.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
4 | 1, 2, 3 | p1val 18423 | . 2 ⊢ (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵)) |
5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
6 | eqid 2725 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
7 | 1, 2, 6 | op01dm 38785 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
8 | 7 | simpld 493 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾)) |
9 | 1, 2, 5, 8 | lubcl 18352 | . 2 ⊢ (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵) |
10 | 4, 9 | eqeltrd 2825 | 1 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 dom cdm 5678 ‘cfv 6549 Basecbs 17183 lubclub 18304 glbcglb 18305 1.cp1 18419 OPcops 38774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-lub 18341 df-p1 18421 df-oposet 38778 |
This theorem is referenced by: op1le 38794 glb0N 38795 opoc1 38804 opoc0 38805 olm11 38829 olm12 38830 ncvr1 38874 hlhgt2 38992 hl0lt1N 38993 hl2at 39008 athgt 39059 1cvrco 39075 1cvrjat 39078 pmap1N 39370 pol1N 39513 lhp2lt 39604 lhpexnle 39609 dih1 40889 dih1rn 40890 dih1cnv 40891 dihglb2 40945 dochocss 40969 dihjatc 41020 |
Copyright terms: Public domain | W3C validator |