| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op1cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a unity element. (helch 31224 analog.) (Contributed by NM, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| op1cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op1cl.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| op1cl | ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | op1cl.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 4 | 1, 2, 3 | p1val 18438 | . 2 ⊢ (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 7 | 1, 2, 6 | op01dm 39201 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾)) |
| 9 | 1, 2, 5, 8 | lubcl 18367 | . 2 ⊢ (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2834 | 1 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 dom cdm 5654 ‘cfv 6531 Basecbs 17228 lubclub 18321 glbcglb 18322 1.cp1 18434 OPcops 39190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-lub 18356 df-p1 18436 df-oposet 39194 |
| This theorem is referenced by: op1le 39210 glb0N 39211 opoc1 39220 opoc0 39221 olm11 39245 olm12 39246 ncvr1 39290 hlhgt2 39408 hl0lt1N 39409 hl2at 39424 athgt 39475 1cvrco 39491 1cvrjat 39494 pmap1N 39786 pol1N 39929 lhp2lt 40020 lhpexnle 40025 dih1 41305 dih1rn 41306 dih1cnv 41307 dihglb2 41361 dochocss 41385 dihjatc 41436 |
| Copyright terms: Public domain | W3C validator |