Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op1cl Structured version   Visualization version   GIF version

Theorem op1cl 39141
Description: An orthoposet has a unity element. (helch 31275 analog.) (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
op1cl.b 𝐵 = (Base‘𝐾)
op1cl.u 1 = (1.‘𝐾)
Assertion
Ref Expression
op1cl (𝐾 ∈ OP → 1𝐵)

Proof of Theorem op1cl
StepHypRef Expression
1 op1cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2740 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 op1cl.u . . 3 1 = (1.‘𝐾)
41, 2, 3p1val 18498 . 2 (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 eqid 2740 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
71, 2, 6op01dm 39139 . . . 4 (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)))
87simpld 494 . . 3 (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾))
91, 2, 5, 8lubcl 18427 . 2 (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵)
104, 9eqeltrd 2844 1 (𝐾 ∈ OP → 1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  dom cdm 5700  cfv 6573  Basecbs 17258  lubclub 18379  glbcglb 18380  1.cp1 18494  OPcops 39128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-lub 18416  df-p1 18496  df-oposet 39132
This theorem is referenced by:  op1le  39148  glb0N  39149  opoc1  39158  opoc0  39159  olm11  39183  olm12  39184  ncvr1  39228  hlhgt2  39346  hl0lt1N  39347  hl2at  39362  athgt  39413  1cvrco  39429  1cvrjat  39432  pmap1N  39724  pol1N  39867  lhp2lt  39958  lhpexnle  39963  dih1  41243  dih1rn  41244  dih1cnv  41245  dihglb2  41299  dochocss  41323  dihjatc  41374
  Copyright terms: Public domain W3C validator