| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op1cl | Structured version Visualization version GIF version | ||
| Description: An orthoposet has a unity element. (helch 31179 analog.) (Contributed by NM, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| op1cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| op1cl.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| op1cl | ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | op1cl.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 4 | 1, 2, 3 | p1val 18394 | . 2 ⊢ (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 7 | 1, 2, 6 | op01dm 39183 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾)) |
| 9 | 1, 2, 5, 8 | lubcl 18323 | . 2 ⊢ (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵) |
| 10 | 4, 9 | eqeltrd 2829 | 1 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lubclub 18277 glbcglb 18278 1.cp1 18390 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-lub 18312 df-p1 18392 df-oposet 39176 |
| This theorem is referenced by: op1le 39192 glb0N 39193 opoc1 39202 opoc0 39203 olm11 39227 olm12 39228 ncvr1 39272 hlhgt2 39390 hl0lt1N 39391 hl2at 39406 athgt 39457 1cvrco 39473 1cvrjat 39476 pmap1N 39768 pol1N 39911 lhp2lt 40002 lhpexnle 40007 dih1 41287 dih1rn 41288 dih1cnv 41289 dihglb2 41343 dochocss 41367 dihjatc 41418 |
| Copyright terms: Public domain | W3C validator |