![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > op1cl | Structured version Visualization version GIF version |
Description: An orthoposet has a unity element. (helch 30491 analog.) (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
op1cl.b | ⊢ 𝐵 = (Base‘𝐾) |
op1cl.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
op1cl | ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2732 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | op1cl.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
4 | 1, 2, 3 | p1val 18380 | . 2 ⊢ (𝐾 ∈ OP → 1 = ((lub‘𝐾)‘𝐵)) |
5 | id 22 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ OP) | |
6 | eqid 2732 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
7 | 1, 2, 6 | op01dm 38048 | . . . 4 ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾))) |
8 | 7 | simpld 495 | . . 3 ⊢ (𝐾 ∈ OP → 𝐵 ∈ dom (lub‘𝐾)) |
9 | 1, 2, 5, 8 | lubcl 18309 | . 2 ⊢ (𝐾 ∈ OP → ((lub‘𝐾)‘𝐵) ∈ 𝐵) |
10 | 4, 9 | eqeltrd 2833 | 1 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 dom cdm 5676 ‘cfv 6543 Basecbs 17143 lubclub 18261 glbcglb 18262 1.cp1 18376 OPcops 38037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-lub 18298 df-p1 18378 df-oposet 38041 |
This theorem is referenced by: op1le 38057 glb0N 38058 opoc1 38067 opoc0 38068 olm11 38092 olm12 38093 ncvr1 38137 hlhgt2 38255 hl0lt1N 38256 hl2at 38271 athgt 38322 1cvrco 38338 1cvrjat 38341 pmap1N 38633 pol1N 38776 lhp2lt 38867 lhpexnle 38872 dih1 40152 dih1rn 40153 dih1cnv 40154 dihglb2 40208 dochocss 40232 dihjatc 40283 |
Copyright terms: Public domain | W3C validator |