MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1stres Structured version   Visualization version   GIF version

Theorem f1stres 7855
Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f1stres (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴

Proof of Theorem f1stres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . . . . 8 𝑦 ∈ V
2 vex 3436 . . . . . . . 8 𝑧 ∈ V
31, 2op1sta 6128 . . . . . . 7 dom {⟨𝑦, 𝑧⟩} = 𝑦
43eleq1i 2829 . . . . . 6 ( dom {⟨𝑦, 𝑧⟩} ∈ 𝐴𝑦𝐴)
54biimpri 227 . . . . 5 (𝑦𝐴 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
65adantr 481 . . . 4 ((𝑦𝐴𝑧𝐵) → dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
76rgen2 3120 . . 3 𝑦𝐴𝑧𝐵 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴
8 sneq 4571 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩})
98dmeqd 5814 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → dom {𝑥} = dom {⟨𝑦, 𝑧⟩})
109unieqd 4853 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → dom {𝑥} = dom {⟨𝑦, 𝑧⟩})
1110eleq1d 2823 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ( dom {𝑥} ∈ 𝐴 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴))
1211ralxp 5750 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴 ↔ ∀𝑦𝐴𝑧𝐵 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
137, 12mpbir 230 . 2 𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴
14 df-1st 7831 . . . . 5 1st = (𝑥 ∈ V ↦ dom {𝑥})
1514reseq1i 5887 . . . 4 (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵))
16 ssv 3945 . . . . 5 (𝐴 × 𝐵) ⊆ V
17 resmpt 5945 . . . . 5 ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥}))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥})
1915, 18eqtri 2766 . . 3 (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥})
2019fmpt 6984 . 2 (∀𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴)
2113, 20mpbi 229 1 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  {csn 4561  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  dom cdm 5589  cres 5591  wf 6429  1st c1st 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-1st 7831
This theorem is referenced by:  fo1stres  7857  1stcof  7861  fparlem1  7952  domssex2  8924  domssex  8925  unxpwdom2  9347  1stfcl  17914  tx1cn  22760  xpinpreima  31856  xpinpreima2  31857  1stmbfm  32227  hausgraph  41037
  Copyright terms: Public domain W3C validator