| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1stres | Structured version Visualization version GIF version | ||
| Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| f1stres | ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 2 | vex 3440 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 3 | 1, 2 | op1sta 6172 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑧〉} = 𝑦 |
| 4 | 3 | eleq1i 2822 | . . . . . 6 ⊢ (∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 5 | 4 | biimpri 228 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 7 | 6 | rgen2 3172 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 |
| 8 | sneq 4583 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
| 9 | 8 | dmeqd 5844 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → dom {𝑥} = dom {〈𝑦, 𝑧〉}) |
| 10 | 9 | unieqd 4869 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑧〉}) |
| 11 | 10 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ dom {𝑥} ∈ 𝐴 ↔ ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴)) |
| 12 | 11 | ralxp 5780 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 13 | 7, 12 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 |
| 14 | df-1st 7921 | . . . . 5 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 15 | 14 | reseq1i 5923 | . . . 4 ⊢ (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) |
| 16 | ssv 3954 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
| 17 | resmpt 5985 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥})) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
| 19 | 15, 18 | eqtri 2754 | . . 3 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
| 20 | 19 | fmpt 7043 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴) |
| 21 | 13, 20 | mpbi 230 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 {csn 4573 〈cop 4579 ∪ cuni 4856 ↦ cmpt 5170 × cxp 5612 dom cdm 5614 ↾ cres 5616 ⟶wf 6477 1st c1st 7919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-1st 7921 |
| This theorem is referenced by: fo1stres 7947 1stcof 7951 fparlem1 8042 domssex2 9050 domssex 9051 unxpwdom2 9474 1stfcl 18103 tx1cn 23524 xpinpreima 33919 xpinpreima2 33920 1stmbfm 34273 hausgraph 43246 |
| Copyright terms: Public domain | W3C validator |