MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1stres Structured version   Visualization version   GIF version

Theorem f1stres 7828
Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f1stres (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴

Proof of Theorem f1stres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . . 8 𝑦 ∈ V
2 vex 3426 . . . . . . . 8 𝑧 ∈ V
31, 2op1sta 6117 . . . . . . 7 dom {⟨𝑦, 𝑧⟩} = 𝑦
43eleq1i 2829 . . . . . 6 ( dom {⟨𝑦, 𝑧⟩} ∈ 𝐴𝑦𝐴)
54biimpri 227 . . . . 5 (𝑦𝐴 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
65adantr 480 . . . 4 ((𝑦𝐴𝑧𝐵) → dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
76rgen2 3126 . . 3 𝑦𝐴𝑧𝐵 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴
8 sneq 4568 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩})
98dmeqd 5803 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → dom {𝑥} = dom {⟨𝑦, 𝑧⟩})
109unieqd 4850 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → dom {𝑥} = dom {⟨𝑦, 𝑧⟩})
1110eleq1d 2823 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ( dom {𝑥} ∈ 𝐴 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴))
1211ralxp 5739 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴 ↔ ∀𝑦𝐴𝑧𝐵 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
137, 12mpbir 230 . 2 𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴
14 df-1st 7804 . . . . 5 1st = (𝑥 ∈ V ↦ dom {𝑥})
1514reseq1i 5876 . . . 4 (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵))
16 ssv 3941 . . . . 5 (𝐴 × 𝐵) ⊆ V
17 resmpt 5934 . . . . 5 ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥}))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥})
1915, 18eqtri 2766 . . 3 (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥})
2019fmpt 6966 . 2 (∀𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴)
2113, 20mpbi 229 1 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  {csn 4558  cop 4564   cuni 4836  cmpt 5153   × cxp 5578  dom cdm 5580  cres 5582  wf 6414  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-1st 7804
This theorem is referenced by:  fo1stres  7830  1stcof  7834  fparlem1  7923  domssex2  8873  domssex  8874  unxpwdom2  9277  1stfcl  17830  tx1cn  22668  xpinpreima  31758  xpinpreima2  31759  1stmbfm  32127  hausgraph  40953
  Copyright terms: Public domain W3C validator