| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1stres | Structured version Visualization version GIF version | ||
| Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| f1stres | ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3484 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 2 | vex 3484 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 3 | 1, 2 | op1sta 6245 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑧〉} = 𝑦 |
| 4 | 3 | eleq1i 2832 | . . . . . 6 ⊢ (∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 5 | 4 | biimpri 228 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 7 | 6 | rgen2 3199 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 |
| 8 | sneq 4636 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
| 9 | 8 | dmeqd 5916 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → dom {𝑥} = dom {〈𝑦, 𝑧〉}) |
| 10 | 9 | unieqd 4920 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑧〉}) |
| 11 | 10 | eleq1d 2826 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ dom {𝑥} ∈ 𝐴 ↔ ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴)) |
| 12 | 11 | ralxp 5852 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 13 | 7, 12 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 |
| 14 | df-1st 8014 | . . . . 5 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 15 | 14 | reseq1i 5993 | . . . 4 ⊢ (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) |
| 16 | ssv 4008 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
| 17 | resmpt 6055 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥})) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
| 19 | 15, 18 | eqtri 2765 | . . 3 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
| 20 | 19 | fmpt 7130 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴) |
| 21 | 13, 20 | mpbi 230 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 {csn 4626 〈cop 4632 ∪ cuni 4907 ↦ cmpt 5225 × cxp 5683 dom cdm 5685 ↾ cres 5687 ⟶wf 6557 1st c1st 8012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-fun 6563 df-fn 6564 df-f 6565 df-1st 8014 |
| This theorem is referenced by: fo1stres 8040 1stcof 8044 fparlem1 8137 domssex2 9177 domssex 9178 unxpwdom2 9628 1stfcl 18242 tx1cn 23617 xpinpreima 33905 xpinpreima2 33906 1stmbfm 34262 hausgraph 43217 |
| Copyright terms: Public domain | W3C validator |