Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1stres | Structured version Visualization version GIF version |
Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f1stres | ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3413 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
2 | vex 3413 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 1, 2 | op1sta 6059 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑧〉} = 𝑦 |
4 | 3 | eleq1i 2842 | . . . . . 6 ⊢ (∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
5 | 4 | biimpri 231 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
6 | 5 | adantr 484 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
7 | 6 | rgen2 3132 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 |
8 | sneq 4535 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
9 | 8 | dmeqd 5751 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → dom {𝑥} = dom {〈𝑦, 𝑧〉}) |
10 | 9 | unieqd 4815 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑧〉}) |
11 | 10 | eleq1d 2836 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ dom {𝑥} ∈ 𝐴 ↔ ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴)) |
12 | 11 | ralxp 5687 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
13 | 7, 12 | mpbir 234 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 |
14 | df-1st 7699 | . . . . 5 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
15 | 14 | reseq1i 5824 | . . . 4 ⊢ (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) |
16 | ssv 3918 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
17 | resmpt 5882 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥})) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
19 | 15, 18 | eqtri 2781 | . . 3 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
20 | 19 | fmpt 6871 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴) |
21 | 13, 20 | mpbi 233 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ⊆ wss 3860 {csn 4525 〈cop 4531 ∪ cuni 4801 ↦ cmpt 5116 × cxp 5526 dom cdm 5528 ↾ cres 5530 ⟶wf 6336 1st c1st 7697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-1st 7699 |
This theorem is referenced by: fo1stres 7725 1stcof 7729 fparlem1 7818 domssex2 8712 domssex 8713 unxpwdom2 9098 1stfcl 17526 tx1cn 22322 xpinpreima 31389 xpinpreima2 31390 1stmbfm 31758 hausgraph 40564 |
Copyright terms: Public domain | W3C validator |