![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnsnop | Structured version Visualization version GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rnsnop | ⊢ ran {⟨𝐴, 𝐵⟩} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | rnsnopg 6219 | . 2 ⊢ (𝐴 ∈ V → ran {⟨𝐴, 𝐵⟩} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran {⟨𝐴, 𝐵⟩} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3469 {csn 4624 ⟨cop 4630 ran crn 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: op2nda 6226 fpr 7157 en1 9039 en1OLD 9040 fodomfi 9343 dcomex 10464 s1rn 14575 axlowdimlem13 28758 ex-rn 30243 ex-ima 30245 ptrest 37081 poimirlem3 37085 gidsn 37414 zrdivrng 37415 |
Copyright terms: Public domain | W3C validator |