| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnsnop | Structured version Visualization version GIF version | ||
| Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnsnop | ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnsnopg 6170 | . 2 ⊢ (𝐴 ∈ V → ran {〈𝐴, 𝐵〉} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: op2nda 6177 fpr 7088 en1 8949 fodomfi 9201 fodomfiOLD 9220 dcomex 10341 s1rn 14506 axlowdimlem13 28899 ex-rn 30384 ex-ima 30386 ptrest 37609 poimirlem3 37613 gidsn 37942 zrdivrng 37943 |
| Copyright terms: Public domain | W3C validator |