MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnop Structured version   Visualization version   GIF version

Theorem rnsnop 6246
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
cnvsn.1 𝐴 ∈ V
Assertion
Ref Expression
rnsnop ran {⟨𝐴, 𝐵⟩} = {𝐵}

Proof of Theorem rnsnop
StepHypRef Expression
1 cnvsn.1 . 2 𝐴 ∈ V
2 rnsnopg 6243 . 2 (𝐴 ∈ V → ran {⟨𝐴, 𝐵⟩} = {𝐵})
31, 2ax-mp 5 1 ran {⟨𝐴, 𝐵⟩} = {𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  ran crn 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  op2nda  6250  fpr  7174  en1  9063  fodomfi  9348  fodomfiOLD  9368  dcomex  10485  s1rn  14634  axlowdimlem13  28984  ex-rn  30469  ex-ima  30471  ptrest  37606  poimirlem3  37610  gidsn  37939  zrdivrng  37940
  Copyright terms: Public domain W3C validator