MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnop Structured version   Visualization version   GIF version

Theorem rnsnop 6222
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
cnvsn.1 𝐴 ∈ V
Assertion
Ref Expression
rnsnop ran {⟨𝐴, 𝐵⟩} = {𝐵}

Proof of Theorem rnsnop
StepHypRef Expression
1 cnvsn.1 . 2 𝐴 ∈ V
2 rnsnopg 6219 . 2 (𝐴 ∈ V → ran {⟨𝐴, 𝐵⟩} = {𝐵})
31, 2ax-mp 5 1 ran {⟨𝐴, 𝐵⟩} = {𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3469  {csn 4624  cop 4630  ran crn 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683
This theorem is referenced by:  op2nda  6226  fpr  7157  en1  9039  en1OLD  9040  fodomfi  9343  dcomex  10464  s1rn  14575  axlowdimlem13  28758  ex-rn  30243  ex-ima  30245  ptrest  37081  poimirlem3  37085  gidsn  37414  zrdivrng  37415
  Copyright terms: Public domain W3C validator