Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnsnop | Structured version Visualization version GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rnsnop | ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | rnsnopg 6113 | . 2 ⊢ (𝐴 ∈ V → ran {〈𝐴, 𝐵〉} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: op2nda 6120 fpr 7008 en1 8765 en1OLD 8766 fodomfi 9022 dcomex 10134 s1rn 14232 axlowdimlem13 27225 ex-rn 28705 ex-ima 28707 ptrest 35703 poimirlem3 35707 gidsn 36037 zrdivrng 36038 |
Copyright terms: Public domain | W3C validator |