| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnsnop | Structured version Visualization version GIF version | ||
| Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnsnop | ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnsnopg 6182 | . 2 ⊢ (𝐴 ∈ V → ran {〈𝐴, 𝐵〉} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: op2nda 6189 fpr 7108 en1 8972 fodomfi 9237 fodomfiOLD 9257 dcomex 10376 s1rn 14540 axlowdimlem13 28934 ex-rn 30419 ex-ima 30421 ptrest 37606 poimirlem3 37610 gidsn 37939 zrdivrng 37940 |
| Copyright terms: Public domain | W3C validator |