MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1st Structured version   Visualization version   GIF version

Theorem op1st 7955
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op1st (1st ‘⟨𝐴, 𝐵⟩) = 𝐴

Proof of Theorem op1st
StepHypRef Expression
1 1stval 7949 . 2 (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩}
2 op1st.1 . . 3 𝐴 ∈ V
3 op1st.2 . . 3 𝐵 ∈ V
42, 3op1sta 6186 . 2 dom {⟨𝐴, 𝐵⟩} = 𝐴
51, 4eqtri 2752 1 (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cop 4591   cuni 4867  dom cdm 5631  cfv 6499  1st c1st 7945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947
This theorem is referenced by:  op1std  7957  op1stg  7959  1stval2  7964  fo1stres  7973  opreuopreu  7992  eloprabi  8021  xpmapenlem  9085  fseqenlem2  9954  archnq  10909  ruclem8  16181  idfu1st  17817  cofu1st  17821  xpccatid  18125  prf1st  18141  yonedalem21  18210  yonedalem22  18215  2ndcctbss  23318  upxp  23486  uptx  23488  cnheiborlem  24829  ovollb2lem  25365  ovolctb  25367  ovoliunlem2  25380  ovolshftlem1  25386  ovolscalem1  25390  ovolicc1  25393  addsqnreup  27330  2sqreuop  27349  2sqreuopnn  27350  2sqreuoplt  27351  2sqreuopltb  27352  2sqreuopnnlt  27353  2sqreuopnnltb  27354  precsexlem1  28085  precsexlem4  28088  ex-1st  30346  cnnvg  30580  cnnvs  30582  h2hva  30876  h2hsm  30877  hhssva  31159  hhsssm  31160  hhshsslem1  31169  gsumhashmul  32974  rlocf1  33197  fracfld  33231  eulerpartlemgvv  34340  eulerpartlemgh  34342  satfv0fvfmla0  35373  filnetlem3  36341  poimirlem17  37604  heiborlem8  37785  dvhvaddass  41064  dvhlveclem  41075  diblss  41137  aks6d1c3  42084  pellexlem5  42794  pellex  42796  dvnprodlem1  45917  hoicvr  46519  hoicvrrex  46527  ovn0lem  46536  ovnhoilem1  46572  gpgedgvtx0  48025  gpgedgvtx1  48026  gpg3kgrtriex  48053  pgnioedg1  48071  pgnioedg2  48072  pgnioedg3  48073  pgnioedg4  48074  pgnioedg5  48075  pgnbgreunbgrlem2lem1  48077  pgnbgreunbgrlem2lem2  48078  pgnbgreunbgrlem2lem3  48079  pgnbgreunbgrlem5lem1  48083  pgnbgreunbgrlem5lem2  48084  pgnbgreunbgrlem5lem3  48085  eloprab1st2nd  48829  swapf1vala  49228  swapf2f1oaALT  49240  swapfcoa  49243  fuco21  49298  fucof21  49309  prcof1  49350  thincciso  49415
  Copyright terms: Public domain W3C validator