![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1st | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1st | ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stval 8032 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = ∪ dom {〈𝐴, 𝐵〉} | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op1sta 6256 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
5 | 1, 4 | eqtri 2768 | 1 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 ∪ cuni 4931 dom cdm 5700 ‘cfv 6573 1st c1st 8028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 |
This theorem is referenced by: op1std 8040 op1stg 8042 1stval2 8047 fo1stres 8056 opreuopreu 8075 eloprabi 8104 xpmapenlem 9210 fseqenlem2 10094 archnq 11049 ruclem8 16285 idfu1st 17943 cofu1st 17947 xpccatid 18257 prf1st 18273 yonedalem21 18343 yonedalem22 18348 2ndcctbss 23484 upxp 23652 uptx 23654 cnheiborlem 25005 ovollb2lem 25542 ovolctb 25544 ovoliunlem2 25557 ovolshftlem1 25563 ovolscalem1 25567 ovolicc1 25570 addsqnreup 27505 2sqreuop 27524 2sqreuopnn 27525 2sqreuoplt 27526 2sqreuopltb 27527 2sqreuopnnlt 27528 2sqreuopnnltb 27529 precsexlem1 28249 precsexlem4 28252 ex-1st 30476 cnnvg 30710 cnnvs 30712 h2hva 31006 h2hsm 31007 hhssva 31289 hhsssm 31290 hhshsslem1 31299 gsumhashmul 33040 rlocf1 33245 fracfld 33275 eulerpartlemgvv 34341 eulerpartlemgh 34343 satfv0fvfmla0 35381 filnetlem3 36346 poimirlem17 37597 heiborlem8 37778 dvhvaddass 41054 dvhlveclem 41065 diblss 41127 aks6d1c3 42080 pellexlem5 42789 pellex 42791 dvnprodlem1 45867 hoicvr 46469 hoicvrrex 46477 ovn0lem 46486 ovnhoilem1 46522 thincciso 48716 |
Copyright terms: Public domain | W3C validator |