MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1st Structured version   Visualization version   GIF version

Theorem op1st 7996
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op1st (1st ‘⟨𝐴, 𝐵⟩) = 𝐴

Proof of Theorem op1st
StepHypRef Expression
1 1stval 7990 . 2 (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩}
2 op1st.1 . . 3 𝐴 ∈ V
3 op1st.2 . . 3 𝐵 ∈ V
42, 3op1sta 6214 . 2 dom {⟨𝐴, 𝐵⟩} = 𝐴
51, 4eqtri 2758 1 (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cop 4607   cuni 4883  dom cdm 5654  cfv 6531  1st c1st 7986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988
This theorem is referenced by:  op1std  7998  op1stg  8000  1stval2  8005  fo1stres  8014  opreuopreu  8033  eloprabi  8062  xpmapenlem  9158  fseqenlem2  10039  archnq  10994  ruclem8  16255  idfu1st  17892  cofu1st  17896  xpccatid  18200  prf1st  18216  yonedalem21  18285  yonedalem22  18290  2ndcctbss  23393  upxp  23561  uptx  23563  cnheiborlem  24904  ovollb2lem  25441  ovolctb  25443  ovoliunlem2  25456  ovolshftlem1  25462  ovolscalem1  25466  ovolicc1  25469  addsqnreup  27406  2sqreuop  27425  2sqreuopnn  27426  2sqreuoplt  27427  2sqreuopltb  27428  2sqreuopnnlt  27429  2sqreuopnnltb  27430  precsexlem1  28161  precsexlem4  28164  ex-1st  30425  cnnvg  30659  cnnvs  30661  h2hva  30955  h2hsm  30956  hhssva  31238  hhsssm  31239  hhshsslem1  31248  gsumhashmul  33055  rlocf1  33268  fracfld  33302  eulerpartlemgvv  34408  eulerpartlemgh  34410  satfv0fvfmla0  35435  filnetlem3  36398  poimirlem17  37661  heiborlem8  37842  dvhvaddass  41116  dvhlveclem  41127  diblss  41189  aks6d1c3  42136  pellexlem5  42856  pellex  42858  dvnprodlem1  45975  hoicvr  46577  hoicvrrex  46585  ovn0lem  46594  ovnhoilem1  46630  gpgedgvtx0  48065  gpgedgvtx1  48066  gpg3kgrtriex  48091  eloprab1st2nd  48843  swapf1vala  49183  swapf2f1oaALT  49195  swapfcoa  49198  fuco21  49247  fucof21  49258  prcof1  49298  thincciso  49339
  Copyright terms: Public domain W3C validator