MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1st Structured version   Visualization version   GIF version

Theorem op1st 8038
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op1st (1st ‘⟨𝐴, 𝐵⟩) = 𝐴

Proof of Theorem op1st
StepHypRef Expression
1 1stval 8032 . 2 (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩}
2 op1st.1 . . 3 𝐴 ∈ V
3 op1st.2 . . 3 𝐵 ∈ V
42, 3op1sta 6256 . 2 dom {⟨𝐴, 𝐵⟩} = 𝐴
51, 4eqtri 2768 1 (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cop 4654   cuni 4931  dom cdm 5700  cfv 6573  1st c1st 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030
This theorem is referenced by:  op1std  8040  op1stg  8042  1stval2  8047  fo1stres  8056  opreuopreu  8075  eloprabi  8104  xpmapenlem  9210  fseqenlem2  10094  archnq  11049  ruclem8  16285  idfu1st  17943  cofu1st  17947  xpccatid  18257  prf1st  18273  yonedalem21  18343  yonedalem22  18348  2ndcctbss  23484  upxp  23652  uptx  23654  cnheiborlem  25005  ovollb2lem  25542  ovolctb  25544  ovoliunlem2  25557  ovolshftlem1  25563  ovolscalem1  25567  ovolicc1  25570  addsqnreup  27505  2sqreuop  27524  2sqreuopnn  27525  2sqreuoplt  27526  2sqreuopltb  27527  2sqreuopnnlt  27528  2sqreuopnnltb  27529  precsexlem1  28249  precsexlem4  28252  ex-1st  30476  cnnvg  30710  cnnvs  30712  h2hva  31006  h2hsm  31007  hhssva  31289  hhsssm  31290  hhshsslem1  31299  gsumhashmul  33040  rlocf1  33245  fracfld  33275  eulerpartlemgvv  34341  eulerpartlemgh  34343  satfv0fvfmla0  35381  filnetlem3  36346  poimirlem17  37597  heiborlem8  37778  dvhvaddass  41054  dvhlveclem  41065  diblss  41127  aks6d1c3  42080  pellexlem5  42789  pellex  42791  dvnprodlem1  45867  hoicvr  46469  hoicvrrex  46477  ovn0lem  46486  ovnhoilem1  46522  thincciso  48716
  Copyright terms: Public domain W3C validator