| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1st | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| Ref | Expression |
|---|---|
| op1st.1 | ⊢ 𝐴 ∈ V |
| op1st.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1st | ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stval 7990 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = ∪ dom {〈𝐴, 𝐵〉} | |
| 2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | op1sta 6214 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| 5 | 1, 4 | eqtri 2758 | 1 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ∪ cuni 4883 dom cdm 5654 ‘cfv 6531 1st c1st 7986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 |
| This theorem is referenced by: op1std 7998 op1stg 8000 1stval2 8005 fo1stres 8014 opreuopreu 8033 eloprabi 8062 xpmapenlem 9158 fseqenlem2 10039 archnq 10994 ruclem8 16255 idfu1st 17892 cofu1st 17896 xpccatid 18200 prf1st 18216 yonedalem21 18285 yonedalem22 18290 2ndcctbss 23393 upxp 23561 uptx 23563 cnheiborlem 24904 ovollb2lem 25441 ovolctb 25443 ovoliunlem2 25456 ovolshftlem1 25462 ovolscalem1 25466 ovolicc1 25469 addsqnreup 27406 2sqreuop 27425 2sqreuopnn 27426 2sqreuoplt 27427 2sqreuopltb 27428 2sqreuopnnlt 27429 2sqreuopnnltb 27430 precsexlem1 28161 precsexlem4 28164 ex-1st 30425 cnnvg 30659 cnnvs 30661 h2hva 30955 h2hsm 30956 hhssva 31238 hhsssm 31239 hhshsslem1 31248 gsumhashmul 33055 rlocf1 33268 fracfld 33302 eulerpartlemgvv 34408 eulerpartlemgh 34410 satfv0fvfmla0 35435 filnetlem3 36398 poimirlem17 37661 heiborlem8 37842 dvhvaddass 41116 dvhlveclem 41127 diblss 41189 aks6d1c3 42136 pellexlem5 42856 pellex 42858 dvnprodlem1 45975 hoicvr 46577 hoicvrrex 46585 ovn0lem 46594 ovnhoilem1 46630 gpgedgvtx0 48065 gpgedgvtx1 48066 gpg3kgrtriex 48091 eloprab1st2nd 48843 swapf1vala 49183 swapf2f1oaALT 49195 swapfcoa 49198 fuco21 49247 fucof21 49258 prcof1 49298 thincciso 49339 |
| Copyright terms: Public domain | W3C validator |