| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1st | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| Ref | Expression |
|---|---|
| op1st.1 | ⊢ 𝐴 ∈ V |
| op1st.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1st | ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stval 7998 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = ∪ dom {〈𝐴, 𝐵〉} | |
| 2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | op1sta 6225 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| 5 | 1, 4 | eqtri 2757 | 1 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 〈cop 4612 ∪ cuni 4887 dom cdm 5665 ‘cfv 6541 1st c1st 7994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fv 6549 df-1st 7996 |
| This theorem is referenced by: op1std 8006 op1stg 8008 1stval2 8013 fo1stres 8022 opreuopreu 8041 eloprabi 8070 xpmapenlem 9166 fseqenlem2 10047 archnq 11002 ruclem8 16255 idfu1st 17895 cofu1st 17899 xpccatid 18203 prf1st 18219 yonedalem21 18288 yonedalem22 18293 2ndcctbss 23409 upxp 23577 uptx 23579 cnheiborlem 24922 ovollb2lem 25459 ovolctb 25461 ovoliunlem2 25474 ovolshftlem1 25480 ovolscalem1 25484 ovolicc1 25487 addsqnreup 27423 2sqreuop 27442 2sqreuopnn 27443 2sqreuoplt 27444 2sqreuopltb 27445 2sqreuopnnlt 27446 2sqreuopnnltb 27447 precsexlem1 28167 precsexlem4 28170 ex-1st 30391 cnnvg 30625 cnnvs 30627 h2hva 30921 h2hsm 30922 hhssva 31204 hhsssm 31205 hhshsslem1 31214 gsumhashmul 33003 rlocf1 33216 fracfld 33250 eulerpartlemgvv 34337 eulerpartlemgh 34339 satfv0fvfmla0 35377 filnetlem3 36340 poimirlem17 37603 heiborlem8 37784 dvhvaddass 41058 dvhlveclem 41069 diblss 41131 aks6d1c3 42083 pellexlem5 42807 pellex 42809 dvnprodlem1 45918 hoicvr 46520 hoicvrrex 46528 ovn0lem 46537 ovnhoilem1 46573 gpgedgvtx0 47977 gpgedgvtx1 47978 gpg3kgrtriex 48003 swapf1vala 48943 swapf2f1oaALT 48955 swapfcoa 48958 fuco21 49007 fucof21 49018 thincciso 49080 |
| Copyright terms: Public domain | W3C validator |