Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op1st | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1st | ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stval 7806 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = ∪ dom {〈𝐴, 𝐵〉} | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op1sta 6117 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
5 | 1, 4 | eqtri 2766 | 1 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ∪ cuni 4836 dom cdm 5580 ‘cfv 6418 1st c1st 7802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 |
This theorem is referenced by: op1std 7814 op1stg 7816 1stval2 7821 fo1stres 7830 opreuopreu 7849 eloprabi 7876 xpmapenlem 8880 fseqenlem2 9712 archnq 10667 ruclem8 15874 idfu1st 17510 cofu1st 17514 xpccatid 17821 prf1st 17837 yonedalem21 17907 yonedalem22 17912 2ndcctbss 22514 upxp 22682 uptx 22684 cnheiborlem 24023 ovollb2lem 24557 ovolctb 24559 ovoliunlem2 24572 ovolshftlem1 24578 ovolscalem1 24582 ovolicc1 24585 addsqnreup 26496 2sqreuop 26515 2sqreuopnn 26516 2sqreuoplt 26517 2sqreuopltb 26518 2sqreuopnnlt 26519 2sqreuopnnltb 26520 ex-1st 28709 cnnvg 28941 cnnvs 28943 h2hva 29237 h2hsm 29238 hhssva 29520 hhsssm 29521 hhshsslem1 29530 gsumhashmul 31218 eulerpartlemgvv 32243 eulerpartlemgh 32245 satfv0fvfmla0 33275 ot21std 33583 filnetlem3 34496 poimirlem17 35721 heiborlem8 35903 dvhvaddass 39038 dvhlveclem 39049 diblss 39111 pellexlem5 40571 pellex 40573 dvnprodlem1 43377 hoicvr 43976 hoicvrrex 43984 ovn0lem 43993 ovnhoilem1 44029 thincciso 46218 |
Copyright terms: Public domain | W3C validator |