MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1st Structured version   Visualization version   GIF version

Theorem op1st 7812
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op1st (1st ‘⟨𝐴, 𝐵⟩) = 𝐴

Proof of Theorem op1st
StepHypRef Expression
1 1stval 7806 . 2 (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩}
2 op1st.1 . . 3 𝐴 ∈ V
3 op1st.2 . . 3 𝐵 ∈ V
42, 3op1sta 6117 . 2 dom {⟨𝐴, 𝐵⟩} = 𝐴
51, 4eqtri 2766 1 (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cop 4564   cuni 4836  dom cdm 5580  cfv 6418  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804
This theorem is referenced by:  op1std  7814  op1stg  7816  1stval2  7821  fo1stres  7830  opreuopreu  7849  eloprabi  7876  xpmapenlem  8880  fseqenlem2  9712  archnq  10667  ruclem8  15874  idfu1st  17510  cofu1st  17514  xpccatid  17821  prf1st  17837  yonedalem21  17907  yonedalem22  17912  2ndcctbss  22514  upxp  22682  uptx  22684  cnheiborlem  24023  ovollb2lem  24557  ovolctb  24559  ovoliunlem2  24572  ovolshftlem1  24578  ovolscalem1  24582  ovolicc1  24585  addsqnreup  26496  2sqreuop  26515  2sqreuopnn  26516  2sqreuoplt  26517  2sqreuopltb  26518  2sqreuopnnlt  26519  2sqreuopnnltb  26520  ex-1st  28709  cnnvg  28941  cnnvs  28943  h2hva  29237  h2hsm  29238  hhssva  29520  hhsssm  29521  hhshsslem1  29530  gsumhashmul  31218  eulerpartlemgvv  32243  eulerpartlemgh  32245  satfv0fvfmla0  33275  ot21std  33583  filnetlem3  34496  poimirlem17  35721  heiborlem8  35903  dvhvaddass  39038  dvhlveclem  39049  diblss  39111  pellexlem5  40571  pellex  40573  dvnprodlem1  43377  hoicvr  43976  hoicvrrex  43984  ovn0lem  43993  ovnhoilem1  44029  thincciso  46218
  Copyright terms: Public domain W3C validator