| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5376 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | dmex 7849 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 3 | 2 | uniex 7681 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 4 | df-1st 7931 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 5 | 3, 4 | fnmpti 6629 | . 2 ⊢ 1st Fn V |
| 6 | 4 | rnmpt 5903 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 7 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5411 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op1sta 6178 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2738 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 11 | sneq 4589 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | dmeqd 5852 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4874 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3602 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 16 | eqabi 2863 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 18 | 6, 17 | eqtr4i 2755 | . 2 ⊢ ran 1st = V |
| 19 | df-fo 6492 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3438 {csn 4579 〈cop 4585 ∪ cuni 4861 dom cdm 5623 ran crn 5624 Fn wfn 6481 –onto→wfo 6484 1st c1st 7929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-fo 6492 df-1st 7931 |
| This theorem is referenced by: br1steqg 7953 1stcof 7961 df1st2 8038 1stconst 8040 fsplit 8057 opco1 8063 fpwwe 10559 axpre-sup 11082 homadm 17966 homacd 17967 dmaf 17975 cdaf 17976 1stf1 18117 1stf2 18118 1stfcl 18122 upxp 23527 uptx 23529 cnmpt1st 23572 bcthlem4 25244 uniiccdif 25496 precsexlem10 28142 precsexlem11 28143 vafval 30566 smfval 30568 0vfval 30569 vsfval 30596 xppreima 32607 xppreima2 32613 1stpreimas 32667 1stpreima 32668 fsuppcurry2 32688 gsummpt2d 33021 cnre2csqima 33897 poimirlem26 37645 poimirlem27 37646 |
| Copyright terms: Public domain | W3C validator |