Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version |
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo1st | ⊢ 1st :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5349 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | dmex 7732 | . . . 4 ⊢ dom {𝑥} ∈ V |
3 | 2 | uniex 7572 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
4 | df-1st 7804 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | 3, 4 | fnmpti 6560 | . 2 ⊢ 1st Fn V |
6 | 4 | rnmpt 5853 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
7 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 5373 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op1sta 6117 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2747 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
11 | sneq 4568 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | dmeqd 5803 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4850 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
14 | 13 | rspceeqv 3567 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
15 | 8, 10, 14 | mp2an 688 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
16 | 7, 15 | 2th 263 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
17 | 16 | abbi2i 2878 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
18 | 6, 17 | eqtr4i 2769 | . 2 ⊢ ran 1st = V |
19 | df-fo 6424 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
20 | 5, 18, 19 | mpbir2an 707 | 1 ⊢ 1st :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 {csn 4558 〈cop 4564 ∪ cuni 4836 dom cdm 5580 ran crn 5581 Fn wfn 6413 –onto→wfo 6416 1st c1st 7802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-fo 6424 df-1st 7804 |
This theorem is referenced by: br1steqg 7826 1stcof 7834 df1st2 7909 1stconst 7911 fsplit 7928 fsplitOLD 7929 opco1 7935 fpwwe 10333 axpre-sup 10856 homadm 17671 homacd 17672 dmaf 17680 cdaf 17681 1stf1 17825 1stf2 17826 1stfcl 17830 upxp 22682 uptx 22684 cnmpt1st 22727 bcthlem4 24396 uniiccdif 24647 vafval 28866 smfval 28868 0vfval 28869 vsfval 28896 xppreima 30884 xppreima2 30889 1stpreimas 30940 1stpreima 30941 fsuppcurry2 30963 gsummpt2d 31211 cnre2csqima 31763 poimirlem26 35730 poimirlem27 35731 |
Copyright terms: Public domain | W3C validator |