| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5389 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | dmex 7885 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 3 | 2 | uniex 7717 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 4 | df-1st 7968 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 5 | 3, 4 | fnmpti 6661 | . 2 ⊢ 1st Fn V |
| 6 | 4 | rnmpt 5921 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 7 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5424 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op1sta 6198 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2738 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 11 | sneq 4599 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | dmeqd 5869 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4884 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3611 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 16 | eqabi 2863 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 18 | 6, 17 | eqtr4i 2755 | . 2 ⊢ ran 1st = V |
| 19 | df-fo 6517 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 {csn 4589 〈cop 4595 ∪ cuni 4871 dom cdm 5638 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 1st c1st 7966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-fo 6517 df-1st 7968 |
| This theorem is referenced by: br1steqg 7990 1stcof 7998 df1st2 8077 1stconst 8079 fsplit 8096 opco1 8102 fpwwe 10599 axpre-sup 11122 homadm 18002 homacd 18003 dmaf 18011 cdaf 18012 1stf1 18153 1stf2 18154 1stfcl 18158 upxp 23510 uptx 23512 cnmpt1st 23555 bcthlem4 25227 uniiccdif 25479 precsexlem10 28118 precsexlem11 28119 vafval 30532 smfval 30534 0vfval 30535 vsfval 30562 xppreima 32569 xppreima2 32575 1stpreimas 32629 1stpreima 32630 fsuppcurry2 32649 gsummpt2d 32989 cnre2csqima 33901 poimirlem26 37640 poimirlem27 37641 |
| Copyright terms: Public domain | W3C validator |