MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1st Structured version   Visualization version   GIF version

Theorem fo1st 8008
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5404 . . . . 5 {𝑥} ∈ V
21dmex 7905 . . . 4 dom {𝑥} ∈ V
32uniex 7735 . . 3 dom {𝑥} ∈ V
4 df-1st 7988 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
53, 4fnmpti 6681 . 2 1st Fn V
64rnmpt 5937 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
7 vex 3463 . . . . 5 𝑦 ∈ V
8 opex 5439 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op1sta 6214 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2744 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
11 sneq 4611 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211dmeqd 5885 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1312unieqd 4896 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413rspceeqv 3624 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
158, 10, 14mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1716eqabi 2870 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
186, 17eqtr4i 2761 . 2 ran 1st = V
19 df-fo 6537 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
205, 18, 19mpbir2an 711 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  Vcvv 3459  {csn 4601  cop 4607   cuni 4883  dom cdm 5654  ran crn 5655   Fn wfn 6526  ontowfo 6529  1st c1st 7986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-fo 6537  df-1st 7988
This theorem is referenced by:  br1steqg  8010  1stcof  8018  df1st2  8097  1stconst  8099  fsplit  8116  opco1  8122  fpwwe  10660  axpre-sup  11183  homadm  18053  homacd  18054  dmaf  18062  cdaf  18063  1stf1  18204  1stf2  18205  1stfcl  18209  upxp  23561  uptx  23563  cnmpt1st  23606  bcthlem4  25279  uniiccdif  25531  precsexlem10  28170  precsexlem11  28171  vafval  30584  smfval  30586  0vfval  30587  vsfval  30614  xppreima  32623  xppreima2  32629  1stpreimas  32683  1stpreima  32684  fsuppcurry2  32703  gsummpt2d  33043  cnre2csqima  33942  poimirlem26  37670  poimirlem27  37671
  Copyright terms: Public domain W3C validator