MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1st Structured version   Visualization version   GIF version

Theorem fo1st 7950
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5376 . . . . 5 {𝑥} ∈ V
21dmex 7848 . . . 4 dom {𝑥} ∈ V
32uniex 7683 . . 3 dom {𝑥} ∈ V
4 df-1st 7930 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
53, 4fnmpti 6632 . 2 1st Fn V
64rnmpt 5903 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
7 vex 3441 . . . . 5 𝑦 ∈ V
8 opex 5409 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op1sta 6180 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2742 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
11 sneq 4587 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211dmeqd 5851 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1312unieqd 4873 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413rspceeqv 3596 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
158, 10, 14mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1716eqabi 2868 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
186, 17eqtr4i 2759 . 2 ran 1st = V
19 df-fo 6495 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
205, 18, 19mpbir2an 711 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  {csn 4577  cop 4583   cuni 4860  dom cdm 5621  ran crn 5622   Fn wfn 6484  ontowfo 6487  1st c1st 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-fo 6495  df-1st 7930
This theorem is referenced by:  br1steqg  7952  1stcof  7960  df1st2  8037  1stconst  8039  fsplit  8056  opco1  8062  fpwwe  10548  axpre-sup  11071  homadm  17955  homacd  17956  dmaf  17964  cdaf  17965  1stf1  18106  1stf2  18107  1stfcl  18111  upxp  23558  uptx  23560  cnmpt1st  23603  bcthlem4  25274  uniiccdif  25526  precsexlem10  28174  precsexlem11  28175  vafval  30604  smfval  30606  0vfval  30607  vsfval  30634  xppreima  32649  xppreima2  32655  1stpreimas  32711  1stpreima  32712  fsuppcurry2  32732  gsummpt2d  33060  cnre2csqima  33996  poimirlem26  37759  poimirlem27  37760
  Copyright terms: Public domain W3C validator