Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version |
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo1st | ⊢ 1st :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | dmex 7758 | . . . 4 ⊢ dom {𝑥} ∈ V |
3 | 2 | uniex 7594 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
4 | df-1st 7831 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | 3, 4 | fnmpti 6576 | . 2 ⊢ 1st Fn V |
6 | 4 | rnmpt 5864 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
7 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 5379 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op1sta 6128 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2747 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
11 | sneq 4571 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | dmeqd 5814 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4853 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
14 | 13 | rspceeqv 3575 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
15 | 8, 10, 14 | mp2an 689 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
16 | 7, 15 | 2th 263 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
17 | 16 | abbi2i 2879 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
18 | 6, 17 | eqtr4i 2769 | . 2 ⊢ ran 1st = V |
19 | df-fo 6439 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
20 | 5, 18, 19 | mpbir2an 708 | 1 ⊢ 1st :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 {csn 4561 〈cop 4567 ∪ cuni 4839 dom cdm 5589 ran crn 5590 Fn wfn 6428 –onto→wfo 6431 1st c1st 7829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-fo 6439 df-1st 7831 |
This theorem is referenced by: br1steqg 7853 1stcof 7861 df1st2 7938 1stconst 7940 fsplit 7957 fsplitOLD 7958 opco1 7964 fpwwe 10402 axpre-sup 10925 homadm 17755 homacd 17756 dmaf 17764 cdaf 17765 1stf1 17909 1stf2 17910 1stfcl 17914 upxp 22774 uptx 22776 cnmpt1st 22819 bcthlem4 24491 uniiccdif 24742 vafval 28965 smfval 28967 0vfval 28968 vsfval 28995 xppreima 30983 xppreima2 30988 1stpreimas 31038 1stpreima 31039 fsuppcurry2 31061 gsummpt2d 31309 cnre2csqima 31861 poimirlem26 35803 poimirlem27 35804 |
Copyright terms: Public domain | W3C validator |