MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1st Structured version   Visualization version   GIF version

Theorem fo1st 7851
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5354 . . . . 5 {𝑥} ∈ V
21dmex 7758 . . . 4 dom {𝑥} ∈ V
32uniex 7594 . . 3 dom {𝑥} ∈ V
4 df-1st 7831 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
53, 4fnmpti 6576 . 2 1st Fn V
64rnmpt 5864 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
7 vex 3436 . . . . 5 𝑦 ∈ V
8 opex 5379 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op1sta 6128 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2747 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
11 sneq 4571 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211dmeqd 5814 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1312unieqd 4853 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413rspceeqv 3575 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
158, 10, 14mp2an 689 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
167, 152th 263 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1716abbi2i 2879 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
186, 17eqtr4i 2769 . 2 ran 1st = V
19 df-fo 6439 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
205, 18, 19mpbir2an 708 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  Vcvv 3432  {csn 4561  cop 4567   cuni 4839  dom cdm 5589  ran crn 5590   Fn wfn 6428  ontowfo 6431  1st c1st 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-fo 6439  df-1st 7831
This theorem is referenced by:  br1steqg  7853  1stcof  7861  df1st2  7938  1stconst  7940  fsplit  7957  fsplitOLD  7958  opco1  7964  fpwwe  10402  axpre-sup  10925  homadm  17755  homacd  17756  dmaf  17764  cdaf  17765  1stf1  17909  1stf2  17910  1stfcl  17914  upxp  22774  uptx  22776  cnmpt1st  22819  bcthlem4  24491  uniiccdif  24742  vafval  28965  smfval  28967  0vfval  28968  vsfval  28995  xppreima  30983  xppreima2  30988  1stpreimas  31038  1stpreima  31039  fsuppcurry2  31061  gsummpt2d  31309  cnre2csqima  31861  poimirlem26  35803  poimirlem27  35804
  Copyright terms: Public domain W3C validator