MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1st Structured version   Visualization version   GIF version

Theorem fo1st 7967
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5384 . . . . 5 {𝑥} ∈ V
21dmex 7865 . . . 4 dom {𝑥} ∈ V
32uniex 7697 . . 3 dom {𝑥} ∈ V
4 df-1st 7947 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
53, 4fnmpti 6643 . 2 1st Fn V
64rnmpt 5910 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
7 vex 3448 . . . . 5 𝑦 ∈ V
8 opex 5419 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op1sta 6186 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2738 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
11 sneq 4595 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211dmeqd 5859 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1312unieqd 4880 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413rspceeqv 3608 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
158, 10, 14mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1716eqabi 2863 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
186, 17eqtr4i 2755 . 2 ran 1st = V
19 df-fo 6505 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
205, 18, 19mpbir2an 711 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3444  {csn 4585  cop 4591   cuni 4867  dom cdm 5631  ran crn 5632   Fn wfn 6494  ontowfo 6497  1st c1st 7945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-fo 6505  df-1st 7947
This theorem is referenced by:  br1steqg  7969  1stcof  7977  df1st2  8054  1stconst  8056  fsplit  8073  opco1  8079  fpwwe  10575  axpre-sup  11098  homadm  17978  homacd  17979  dmaf  17987  cdaf  17988  1stf1  18129  1stf2  18130  1stfcl  18134  upxp  23486  uptx  23488  cnmpt1st  23531  bcthlem4  25203  uniiccdif  25455  precsexlem10  28094  precsexlem11  28095  vafval  30505  smfval  30507  0vfval  30508  vsfval  30535  xppreima  32542  xppreima2  32548  1stpreimas  32602  1stpreima  32603  fsuppcurry2  32622  gsummpt2d  32962  cnre2csqima  33874  poimirlem26  37613  poimirlem27  37614
  Copyright terms: Public domain W3C validator