Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version |
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo1st | ⊢ 1st :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5367 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | dmex 7801 | . . . 4 ⊢ dom {𝑥} ∈ V |
3 | 2 | uniex 7632 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
4 | df-1st 7874 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | 3, 4 | fnmpti 6611 | . 2 ⊢ 1st Fn V |
6 | 4 | rnmpt 5881 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
7 | vex 3445 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 5396 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op1sta 6148 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2746 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
11 | sneq 4579 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | dmeqd 5832 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4862 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
14 | 13 | rspceeqv 3584 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
15 | 8, 10, 14 | mp2an 689 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
16 | 7, 15 | 2th 263 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
17 | 16 | abbi2i 2878 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
18 | 6, 17 | eqtr4i 2768 | . 2 ⊢ ran 1st = V |
19 | df-fo 6469 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
20 | 5, 18, 19 | mpbir2an 708 | 1 ⊢ 1st :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 {cab 2714 ∃wrex 3071 Vcvv 3441 {csn 4569 〈cop 4575 ∪ cuni 4848 dom cdm 5605 ran crn 5606 Fn wfn 6458 –onto→wfo 6461 1st c1st 7872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-fun 6465 df-fn 6466 df-fo 6469 df-1st 7874 |
This theorem is referenced by: br1steqg 7896 1stcof 7904 df1st2 7981 1stconst 7983 fsplit 8000 opco1 8006 fpwwe 10472 axpre-sup 10995 homadm 17822 homacd 17823 dmaf 17831 cdaf 17832 1stf1 17976 1stf2 17977 1stfcl 17981 upxp 22845 uptx 22847 cnmpt1st 22890 bcthlem4 24562 uniiccdif 24813 vafval 29073 smfval 29075 0vfval 29076 vsfval 29103 xppreima 31091 xppreima2 31096 1stpreimas 31146 1stpreima 31147 fsuppcurry2 31169 gsummpt2d 31417 cnre2csqima 31967 poimirlem26 35863 poimirlem27 35864 |
Copyright terms: Public domain | W3C validator |