MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1st Structured version   Visualization version   GIF version

Theorem fo1st 7936
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5367 . . . . 5 {𝑥} ∈ V
21dmex 7834 . . . 4 dom {𝑥} ∈ V
32uniex 7669 . . 3 dom {𝑥} ∈ V
4 df-1st 7916 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
53, 4fnmpti 6619 . 2 1st Fn V
64rnmpt 5892 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
7 vex 3440 . . . . 5 𝑦 ∈ V
8 opex 5399 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op1sta 6167 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2740 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
11 sneq 4581 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211dmeqd 5840 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1312unieqd 4867 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413rspceeqv 3595 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
158, 10, 14mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1716eqabi 2866 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
186, 17eqtr4i 2757 . 2 ran 1st = V
19 df-fo 6482 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
205, 18, 19mpbir2an 711 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  {csn 4571  cop 4577   cuni 4854  dom cdm 5611  ran crn 5612   Fn wfn 6471  ontowfo 6474  1st c1st 7914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-fun 6478  df-fn 6479  df-fo 6482  df-1st 7916
This theorem is referenced by:  br1steqg  7938  1stcof  7946  df1st2  8023  1stconst  8025  fsplit  8042  opco1  8048  fpwwe  10532  axpre-sup  11055  homadm  17942  homacd  17943  dmaf  17951  cdaf  17952  1stf1  18093  1stf2  18094  1stfcl  18098  upxp  23533  uptx  23535  cnmpt1st  23578  bcthlem4  25249  uniiccdif  25501  precsexlem10  28149  precsexlem11  28150  vafval  30575  smfval  30577  0vfval  30578  vsfval  30605  xppreima  32619  xppreima2  32625  1stpreimas  32679  1stpreima  32680  fsuppcurry2  32700  gsummpt2d  33021  cnre2csqima  33916  poimirlem26  37686  poimirlem27  37687
  Copyright terms: Public domain W3C validator