| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5392 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | dmex 7888 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 3 | 2 | uniex 7720 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 4 | df-1st 7971 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 5 | 3, 4 | fnmpti 6664 | . 2 ⊢ 1st Fn V |
| 6 | 4 | rnmpt 5924 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 7 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5427 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op1sta 6201 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2739 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 11 | sneq 4602 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | dmeqd 5872 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4887 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3614 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 16 | eqabi 2864 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 18 | 6, 17 | eqtr4i 2756 | . 2 ⊢ ran 1st = V |
| 19 | df-fo 6520 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 {csn 4592 〈cop 4598 ∪ cuni 4874 dom cdm 5641 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 1st c1st 7969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-fo 6520 df-1st 7971 |
| This theorem is referenced by: br1steqg 7993 1stcof 8001 df1st2 8080 1stconst 8082 fsplit 8099 opco1 8105 fpwwe 10606 axpre-sup 11129 homadm 18009 homacd 18010 dmaf 18018 cdaf 18019 1stf1 18160 1stf2 18161 1stfcl 18165 upxp 23517 uptx 23519 cnmpt1st 23562 bcthlem4 25234 uniiccdif 25486 precsexlem10 28125 precsexlem11 28126 vafval 30539 smfval 30541 0vfval 30542 vsfval 30569 xppreima 32576 xppreima2 32582 1stpreimas 32636 1stpreima 32637 fsuppcurry2 32656 gsummpt2d 32996 cnre2csqima 33908 poimirlem26 37647 poimirlem27 37648 |
| Copyright terms: Public domain | W3C validator |