MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1st Structured version   Visualization version   GIF version

Theorem fo1st 7951
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5376 . . . . 5 {𝑥} ∈ V
21dmex 7849 . . . 4 dom {𝑥} ∈ V
32uniex 7681 . . 3 dom {𝑥} ∈ V
4 df-1st 7931 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
53, 4fnmpti 6629 . 2 1st Fn V
64rnmpt 5903 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
7 vex 3442 . . . . 5 𝑦 ∈ V
8 opex 5411 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op1sta 6178 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2738 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
11 sneq 4589 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211dmeqd 5852 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1312unieqd 4874 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413rspceeqv 3602 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
158, 10, 14mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1716eqabi 2863 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
186, 17eqtr4i 2755 . 2 ran 1st = V
19 df-fo 6492 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
205, 18, 19mpbir2an 711 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3438  {csn 4579  cop 4585   cuni 4861  dom cdm 5623  ran crn 5624   Fn wfn 6481  ontowfo 6484  1st c1st 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-fo 6492  df-1st 7931
This theorem is referenced by:  br1steqg  7953  1stcof  7961  df1st2  8038  1stconst  8040  fsplit  8057  opco1  8063  fpwwe  10559  axpre-sup  11082  homadm  17966  homacd  17967  dmaf  17975  cdaf  17976  1stf1  18117  1stf2  18118  1stfcl  18122  upxp  23527  uptx  23529  cnmpt1st  23572  bcthlem4  25244  uniiccdif  25496  precsexlem10  28142  precsexlem11  28143  vafval  30566  smfval  30568  0vfval  30569  vsfval  30596  xppreima  32607  xppreima2  32613  1stpreimas  32667  1stpreima  32668  fsuppcurry2  32688  gsummpt2d  33021  cnre2csqima  33897  poimirlem26  37645  poimirlem27  37646
  Copyright terms: Public domain W3C validator