| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5367 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | dmex 7834 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 3 | 2 | uniex 7669 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 4 | df-1st 7916 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 5 | 3, 4 | fnmpti 6619 | . 2 ⊢ 1st Fn V |
| 6 | 4 | rnmpt 5892 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 7 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5399 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op1sta 6167 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2740 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 11 | sneq 4581 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | dmeqd 5840 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4867 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3595 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 16 | eqabi 2866 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 18 | 6, 17 | eqtr4i 2757 | . 2 ⊢ ran 1st = V |
| 19 | df-fo 6482 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 {csn 4571 〈cop 4577 ∪ cuni 4854 dom cdm 5611 ran crn 5612 Fn wfn 6471 –onto→wfo 6474 1st c1st 7914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-fo 6482 df-1st 7916 |
| This theorem is referenced by: br1steqg 7938 1stcof 7946 df1st2 8023 1stconst 8025 fsplit 8042 opco1 8048 fpwwe 10532 axpre-sup 11055 homadm 17942 homacd 17943 dmaf 17951 cdaf 17952 1stf1 18093 1stf2 18094 1stfcl 18098 upxp 23533 uptx 23535 cnmpt1st 23578 bcthlem4 25249 uniiccdif 25501 precsexlem10 28149 precsexlem11 28150 vafval 30575 smfval 30577 0vfval 30578 vsfval 30605 xppreima 32619 xppreima2 32625 1stpreimas 32679 1stpreima 32680 fsuppcurry2 32700 gsummpt2d 33021 cnre2csqima 33916 poimirlem26 37686 poimirlem27 37687 |
| Copyright terms: Public domain | W3C validator |