MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op2nda Structured version   Visualization version   GIF version

Theorem op2nda 6227
Description: Extract the second member of an ordered pair. (See op1sta 6224 to extract the first member, op2ndb 6226 for an alternate version, and op2nd 7988 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2nda ran {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2nda
StepHypRef Expression
1 cnvsn.1 . . . 4 𝐴 ∈ V
21rnsnop 6223 . . 3 ran {⟨𝐴, 𝐵⟩} = {𝐵}
32unieqi 4921 . 2 ran {⟨𝐴, 𝐵⟩} = {𝐵}
4 cnvsn.2 . . 3 𝐵 ∈ V
54unisn 4930 . 2 {𝐵} = 𝐵
63, 5eqtri 2759 1 ran {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3473  {csn 4628  cop 4634   cuni 4908  ran crn 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  elxp4  7917  elxp5  7918  op2nd  7988  fo2nd  8000  f2ndres  8004  ixpsnf1o  8938  xpassen  9072  xpdom2  9073
  Copyright terms: Public domain W3C validator