![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2nda | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (See op1sta 5863 to extract the first member, op2ndb 5865 for an alternate version, and op2nd 7442 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rnsnop 5862 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
3 | 2 | unieqi 4669 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 4 | unisn 4676 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
6 | 3, 5 | eqtri 2849 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 Vcvv 3414 {csn 4399 〈cop 4405 ∪ cuni 4660 ran crn 5347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-xp 5352 df-rel 5353 df-cnv 5354 df-dm 5356 df-rn 5357 |
This theorem is referenced by: elxp4 7377 elxp5 7378 op2nd 7442 fo2nd 7454 f2ndres 7458 ixpsnf1o 8221 xpassen 8329 xpdom2 8330 |
Copyright terms: Public domain | W3C validator |