| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2nda | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (See op1sta 6174 to extract the first member, op2ndb 6176 for an alternate version, and op2nd 7933 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | rnsnop 6173 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| 3 | 2 | unieqi 4870 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
| 4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 4 | unisn 4877 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
| 6 | 3, 5 | eqtri 2752 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 ∪ cuni 4858 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: elxp4 7855 elxp5 7856 op2nd 7933 fo2nd 7945 f2ndres 7949 ixpsnf1o 8865 xpassen 8988 xpdom2 8989 |
| Copyright terms: Public domain | W3C validator |