Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2nda | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (See op1sta 6088 to extract the first member, op2ndb 6090 for an alternate version, and op2nd 7770 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rnsnop 6087 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
3 | 2 | unieqi 4832 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 4 | unisn 4841 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
6 | 3, 5 | eqtri 2765 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 {csn 4541 〈cop 4547 ∪ cuni 4819 ran crn 5552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 |
This theorem is referenced by: elxp4 7700 elxp5 7701 op2nd 7770 fo2nd 7782 f2ndres 7786 ixpsnf1o 8619 xpassen 8739 xpdom2 8740 |
Copyright terms: Public domain | W3C validator |