| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2nda | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (See op1sta 6201 to extract the first member, op2ndb 6203 for an alternate version, and op2nd 7980 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | rnsnop 6200 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| 3 | 2 | unieqi 4886 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
| 4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 4 | unisn 4893 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
| 6 | 3, 5 | eqtri 2753 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 ∪ cuni 4874 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: elxp4 7901 elxp5 7902 op2nd 7980 fo2nd 7992 f2ndres 7996 ixpsnf1o 8914 xpassen 9040 xpdom2 9041 |
| Copyright terms: Public domain | W3C validator |