| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2nda | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (See op1sta 6186 to extract the first member, op2ndb 6188 for an alternate version, and op2nd 7956 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | rnsnop 6185 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| 3 | 2 | unieqi 4879 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
| 4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 4 | unisn 4886 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
| 6 | 3, 5 | eqtri 2752 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 ∪ cuni 4867 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: elxp4 7878 elxp5 7879 op2nd 7956 fo2nd 7968 f2ndres 7972 ixpsnf1o 8888 xpassen 9012 xpdom2 9013 |
| Copyright terms: Public domain | W3C validator |