MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp4 Structured version   Visualization version   GIF version

Theorem elxp4 7909
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 7910, elxp6 8005, and elxp7 8006. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
elxp4 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5698 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
2 sneq 4637 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
32rneqd 5935 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
43unieqd 4921 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
5 vex 3478 . . . . . . . . . . 11 𝑥 ∈ V
6 vex 3478 . . . . . . . . . . 11 𝑦 ∈ V
75, 6op2nda 6224 . . . . . . . . . 10 ran {⟨𝑥, 𝑦⟩} = 𝑦
84, 7eqtr2di 2789 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
98pm4.71ri 561 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
109anbi1i 624 . . . . . . 7 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
11 anass 469 . . . . . . 7 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1210, 11bitri 274 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1312exbii 1850 . . . . 5 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
14 snex 5430 . . . . . . . 8 {𝐴} ∈ V
1514rnex 7899 . . . . . . 7 ran {𝐴} ∈ V
1615uniex 7727 . . . . . 6 ran {𝐴} ∈ V
17 opeq2 4873 . . . . . . . 8 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
1817eqeq2d 2743 . . . . . . 7 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
19 eleq1 2821 . . . . . . . 8 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
2019anbi2d 629 . . . . . . 7 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2118, 20anbi12d 631 . . . . . 6 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
2216, 21ceqsexv 3525 . . . . 5 (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2313, 22bitri 274 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
24 sneq 4637 . . . . . . . . 9 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → {𝐴} = {⟨𝑥, ran {𝐴}⟩})
2524dmeqd 5903 . . . . . . . 8 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → dom {𝐴} = dom {⟨𝑥, ran {𝐴}⟩})
2625unieqd 4921 . . . . . . 7 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → dom {𝐴} = dom {⟨𝑥, ran {𝐴}⟩})
275, 16op1sta 6221 . . . . . . 7 dom {⟨𝑥, ran {𝐴}⟩} = 𝑥
2826, 27eqtr2di 2789 . . . . . 6 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = dom {𝐴})
2928pm4.71ri 561 . . . . 5 (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
3029anbi1i 624 . . . 4 ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
31 anass 469 . . . 4 (((𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3223, 30, 313bitri 296 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3332exbii 1850 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3414dmex 7898 . . . 4 dom {𝐴} ∈ V
3534uniex 7727 . . 3 dom {𝐴} ∈ V
36 opeq1 4872 . . . . 5 (𝑥 = dom {𝐴} → ⟨𝑥, ran {𝐴}⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩)
3736eqeq2d 2743 . . . 4 (𝑥 = dom {𝐴} → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩))
38 eleq1 2821 . . . . 5 (𝑥 = dom {𝐴} → (𝑥𝐵 dom {𝐴} ∈ 𝐵))
3938anbi1d 630 . . . 4 (𝑥 = dom {𝐴} → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
4037, 39anbi12d 631 . . 3 (𝑥 = dom {𝐴} → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
4135, 40ceqsexv 3525 . 2 (∃𝑥(𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
421, 33, 413bitri 296 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  {csn 4627  cop 4633   cuni 4907   × cxp 5673  dom cdm 5675  ran crn 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686
This theorem is referenced by:  elxp6  8005  xpdom2  9063
  Copyright terms: Public domain W3C validator