MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndval2 Structured version   Visualization version   GIF version

Theorem 2ndval2 7939
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
2ndval2 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})

Proof of Theorem 2ndval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5691 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 3440 . . . . . 6 𝑥 ∈ V
3 vex 3440 . . . . . 6 𝑦 ∈ V
42, 3op2nd 7930 . . . . 5 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
52, 3op2ndb 6174 . . . . 5 {⟨𝑥, 𝑦⟩} = 𝑦
64, 5eqtr4i 2757 . . . 4 (2nd ‘⟨𝑥, 𝑦⟩) = {⟨𝑥, 𝑦⟩}
7 fveq2 6822 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦⟩))
8 sneq 4586 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
98cnveqd 5815 . . . . . . 7 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
109inteqd 4902 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1110inteqd 4902 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1211inteqd 4902 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
136, 7, 123eqtr4a 2792 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
1413exlimivv 1933 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
151, 14sylbi 217 1 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  {csn 4576  cop 4582   cint 4897   × cxp 5614  ccnv 5615  cfv 6481  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-2nd 7922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator