| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndval2 | Structured version Visualization version GIF version | ||
| Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| Ref | Expression |
|---|---|
| 2ndval2 | ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 5729 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3463 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op2nd 7997 | . . . . 5 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 5 | 2, 3 | op2ndb 6216 | . . . . 5 ⊢ ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} = 𝑦 |
| 6 | 4, 5 | eqtr4i 2761 | . . . 4 ⊢ (2nd ‘〈𝑥, 𝑦〉) = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} |
| 7 | fveq2 6876 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = (2nd ‘〈𝑥, 𝑦〉)) | |
| 8 | sneq 4611 | . . . . . . . 8 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) | |
| 9 | 8 | cnveqd 5855 | . . . . . . 7 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ◡{𝐴} = ◡{〈𝑥, 𝑦〉}) |
| 10 | 9 | inteqd 4927 | . . . . . 6 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ◡{𝐴} = ∩ ◡{〈𝑥, 𝑦〉}) |
| 11 | 10 | inteqd 4927 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ◡{𝐴} = ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 12 | 11 | inteqd 4927 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ∩ ◡{𝐴} = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 13 | 6, 7, 12 | 3eqtr4a 2796 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 14 | 13 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ∩ cint 4922 × cxp 5652 ◡ccnv 5653 ‘cfv 6531 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-2nd 7989 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |