MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndval2 Structured version   Visualization version   GIF version

Theorem 2ndval2 7337
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
2ndval2 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})

Proof of Theorem 2ndval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5316 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 3354 . . . . . 6 𝑥 ∈ V
3 vex 3354 . . . . . 6 𝑦 ∈ V
42, 3op2nd 7328 . . . . 5 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
52, 3op2ndb 5762 . . . . 5 {⟨𝑥, 𝑦⟩} = 𝑦
64, 5eqtr4i 2796 . . . 4 (2nd ‘⟨𝑥, 𝑦⟩) = {⟨𝑥, 𝑦⟩}
7 fveq2 6333 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦⟩))
8 sneq 4327 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
98cnveqd 5435 . . . . . . 7 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
109inteqd 4617 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1110inteqd 4617 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1211inteqd 4617 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
136, 7, 123eqtr4a 2831 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
1413exlimivv 2012 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
151, 14sylbi 207 1 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wex 1852  wcel 2145  Vcvv 3351  {csn 4317  cop 4323   cint 4612   × cxp 5248  ccnv 5249  cfv 6030  2nd c2nd 7318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-int 4613  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5993  df-fun 6032  df-fv 6038  df-2nd 7320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator