| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndval2 | Structured version Visualization version GIF version | ||
| Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| Ref | Expression |
|---|---|
| 2ndval2 | ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 5698 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3442 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op2nd 7940 | . . . . 5 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 5 | 2, 3 | op2ndb 6180 | . . . . 5 ⊢ ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} = 𝑦 |
| 6 | 4, 5 | eqtr4i 2755 | . . . 4 ⊢ (2nd ‘〈𝑥, 𝑦〉) = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} |
| 7 | fveq2 6826 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = (2nd ‘〈𝑥, 𝑦〉)) | |
| 8 | sneq 4589 | . . . . . . . 8 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) | |
| 9 | 8 | cnveqd 5822 | . . . . . . 7 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ◡{𝐴} = ◡{〈𝑥, 𝑦〉}) |
| 10 | 9 | inteqd 4904 | . . . . . 6 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ◡{𝐴} = ∩ ◡{〈𝑥, 𝑦〉}) |
| 11 | 10 | inteqd 4904 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ◡{𝐴} = ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 12 | 11 | inteqd 4904 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ∩ ◡{𝐴} = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 13 | 6, 7, 12 | 3eqtr4a 2790 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 14 | 13 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 ∩ cint 4899 × cxp 5621 ◡ccnv 5622 ‘cfv 6486 2nd c2nd 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-2nd 7932 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |