![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndval2 | Structured version Visualization version GIF version |
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
Ref | Expression |
---|---|
2ndval2 | ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5748 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3478 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op2nd 7980 | . . . . 5 ⊢ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦 |
5 | 2, 3 | op2ndb 6223 | . . . . 5 ⊢ ∩ ∩ ∩ ◡{⟨𝑥, 𝑦⟩} = 𝑦 |
6 | 4, 5 | eqtr4i 2763 | . . . 4 ⊢ (2nd ‘⟨𝑥, 𝑦⟩) = ∩ ∩ ∩ ◡{⟨𝑥, 𝑦⟩} |
7 | fveq2 6888 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd ‘𝐴) = (2nd ‘⟨𝑥, 𝑦⟩)) | |
8 | sneq 4637 | . . . . . . . 8 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩}) | |
9 | 8 | cnveqd 5873 | . . . . . . 7 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ◡{𝐴} = ◡{⟨𝑥, 𝑦⟩}) |
10 | 9 | inteqd 4954 | . . . . . 6 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∩ ◡{𝐴} = ∩ ◡{⟨𝑥, 𝑦⟩}) |
11 | 10 | inteqd 4954 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∩ ∩ ◡{𝐴} = ∩ ∩ ◡{⟨𝑥, 𝑦⟩}) |
12 | 11 | inteqd 4954 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∩ ∩ ∩ ◡{𝐴} = ∩ ∩ ∩ ◡{⟨𝑥, 𝑦⟩}) |
13 | 6, 7, 12 | 3eqtr4a 2798 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
14 | 13 | exlimivv 1935 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
15 | 1, 14 | sylbi 216 | 1 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 {csn 4627 ⟨cop 4633 ∩ cint 4949 × cxp 5673 ◡ccnv 5674 ‘cfv 6540 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-2nd 7972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |