| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndval2 | Structured version Visualization version GIF version | ||
| Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| Ref | Expression |
|---|---|
| 2ndval2 | ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 5716 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op2nd 7980 | . . . . 5 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 5 | 2, 3 | op2ndb 6203 | . . . . 5 ⊢ ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} = 𝑦 |
| 6 | 4, 5 | eqtr4i 2756 | . . . 4 ⊢ (2nd ‘〈𝑥, 𝑦〉) = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} |
| 7 | fveq2 6861 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = (2nd ‘〈𝑥, 𝑦〉)) | |
| 8 | sneq 4602 | . . . . . . . 8 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) | |
| 9 | 8 | cnveqd 5842 | . . . . . . 7 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ◡{𝐴} = ◡{〈𝑥, 𝑦〉}) |
| 10 | 9 | inteqd 4918 | . . . . . 6 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ◡{𝐴} = ∩ ◡{〈𝑥, 𝑦〉}) |
| 11 | 10 | inteqd 4918 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ◡{𝐴} = ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 12 | 11 | inteqd 4918 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ∩ ◡{𝐴} = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 13 | 6, 7, 12 | 3eqtr4a 2791 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 14 | 13 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 ∩ cint 4913 × cxp 5639 ◡ccnv 5640 ‘cfv 6514 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-2nd 7972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |