Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2nd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nd | ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndval 7834 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉} | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nda 6131 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
5 | 1, 4 | eqtri 2766 | 1 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 ∪ cuni 4839 ran crn 5590 ‘cfv 6433 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 |
This theorem is referenced by: op2ndd 7842 op2ndg 7844 2ndval2 7849 fo2ndres 7858 opreuopreu 7876 eloprabi 7903 fo2ndf 7962 f1o2ndf1 7963 seqomlem1 8281 seqomlem2 8282 xpmapenlem 8931 fseqenlem2 9781 axdc4lem 10211 iunfo 10295 archnq 10736 om2uzrdg 13676 uzrdgsuci 13680 fsum2dlem 15482 fprod2dlem 15690 ruclem8 15946 ruclem11 15949 eucalglt 16290 idfu2nd 17592 idfucl 17596 cofu2nd 17600 cofucl 17603 xpccatid 17905 prf2nd 17922 curf2ndf 17965 yonedalem22 17996 gaid 18905 2ndcctbss 22606 upxp 22774 uptx 22776 txkgen 22803 cnheiborlem 24117 ovollb2lem 24652 ovolctb 24654 ovoliunlem2 24667 ovolshftlem1 24673 ovolscalem1 24677 ovolicc1 24680 addsqnreup 26591 2sqreuop 26610 2sqreuopnn 26611 2sqreuoplt 26612 2sqreuopltb 26613 2sqreuopnnlt 26614 2sqreuopnnltb 26615 wlkswwlksf1o 28244 clwlkclwwlkfo 28373 ex-2nd 28809 cnnvs 29042 cnnvnm 29043 h2hsm 29337 h2hnm 29338 hhsssm 29620 hhssnm 29621 2ndimaxp 30984 2ndresdju 30986 aciunf1lem 30999 gsumpart 31315 eulerpartlemgvv 32343 eulerpartlemgh 32345 satfv0fvfmla0 33375 sategoelfvb 33381 prv1n 33393 msubff1 33518 msubvrs 33522 ot22ndd 33681 poimirlem17 35794 heiborlem7 35975 heiborlem8 35976 dvhvaddass 39111 dvhlveclem 39122 diblss 39184 pellexlem5 40655 pellex 40657 dvnprodlem1 43487 hoicvr 44086 hoicvrrex 44094 ovn0lem 44103 ovnhoilem1 44139 ovnlecvr2 44148 ovolval5lem2 44191 |
Copyright terms: Public domain | W3C validator |