![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2nd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nd | ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndval 8016 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉} | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nda 6250 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
5 | 1, 4 | eqtri 2763 | 1 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 ∪ cuni 4912 ran crn 5690 ‘cfv 6563 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-2nd 8014 |
This theorem is referenced by: op2ndd 8024 op2ndg 8026 2ndval2 8031 fo2ndres 8040 opreuopreu 8058 eloprabi 8087 fo2ndf 8145 f1o2ndf1 8146 seqomlem1 8489 seqomlem2 8490 xpmapenlem 9183 fseqenlem2 10063 axdc4lem 10493 iunfo 10577 archnq 11018 om2uzrdg 13994 uzrdgsuci 13998 fsum2dlem 15803 fprod2dlem 16013 ruclem8 16270 ruclem11 16273 eucalglt 16619 idfu2nd 17928 idfucl 17932 cofu2nd 17936 cofucl 17939 xpccatid 18244 prf2nd 18261 curf2ndf 18304 yonedalem22 18335 gaid 19330 2ndcctbss 23479 upxp 23647 uptx 23649 txkgen 23676 cnheiborlem 25000 ovollb2lem 25537 ovolctb 25539 ovoliunlem2 25552 ovolshftlem1 25558 ovolscalem1 25562 ovolicc1 25565 addsqnreup 27502 2sqreuop 27521 2sqreuopnn 27522 2sqreuoplt 27523 2sqreuopltb 27524 2sqreuopnnlt 27525 2sqreuopnnltb 27526 precsexlem2 28247 precsexlem5 28250 om2noseqrdg 28325 noseqrdgsuc 28329 wlkswwlksf1o 29909 clwlkclwwlkfo 30038 ex-2nd 30474 cnnvs 30709 cnnvnm 30710 h2hsm 31004 h2hnm 31005 hhsssm 31287 hhssnm 31288 2ndimaxp 32663 2ndresdju 32666 aciunf1lem 32679 gsumpart 33043 rlocf1 33260 fracfld 33290 eulerpartlemgvv 34358 eulerpartlemgh 34360 satfv0fvfmla0 35398 sategoelfvb 35404 prv1n 35416 msubff1 35541 msubvrs 35545 poimirlem17 37624 heiborlem7 37804 heiborlem8 37805 dvhvaddass 41080 dvhlveclem 41091 diblss 41153 aks6d1c3 42105 pellexlem5 42821 pellex 42823 dvnprodlem1 45902 hoicvr 46504 hoicvrrex 46512 ovn0lem 46521 ovnhoilem1 46557 ovnlecvr2 46566 ovolval5lem2 46609 |
Copyright terms: Public domain | W3C validator |