![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2nd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nd | ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndval 8033 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉} | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nda 6259 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
5 | 1, 4 | eqtri 2768 | 1 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 ∪ cuni 4931 ran crn 5701 ‘cfv 6573 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-2nd 8031 |
This theorem is referenced by: op2ndd 8041 op2ndg 8043 2ndval2 8048 fo2ndres 8057 opreuopreu 8075 eloprabi 8104 fo2ndf 8162 f1o2ndf1 8163 seqomlem1 8506 seqomlem2 8507 xpmapenlem 9210 fseqenlem2 10094 axdc4lem 10524 iunfo 10608 archnq 11049 om2uzrdg 14007 uzrdgsuci 14011 fsum2dlem 15818 fprod2dlem 16028 ruclem8 16285 ruclem11 16288 eucalglt 16632 idfu2nd 17941 idfucl 17945 cofu2nd 17949 cofucl 17952 xpccatid 18257 prf2nd 18274 curf2ndf 18317 yonedalem22 18348 gaid 19339 2ndcctbss 23484 upxp 23652 uptx 23654 txkgen 23681 cnheiborlem 25005 ovollb2lem 25542 ovolctb 25544 ovoliunlem2 25557 ovolshftlem1 25563 ovolscalem1 25567 ovolicc1 25570 addsqnreup 27505 2sqreuop 27524 2sqreuopnn 27525 2sqreuoplt 27526 2sqreuopltb 27527 2sqreuopnnlt 27528 2sqreuopnnltb 27529 precsexlem2 28250 precsexlem5 28253 om2noseqrdg 28328 noseqrdgsuc 28332 wlkswwlksf1o 29912 clwlkclwwlkfo 30041 ex-2nd 30477 cnnvs 30712 cnnvnm 30713 h2hsm 31007 h2hnm 31008 hhsssm 31290 hhssnm 31291 2ndimaxp 32665 2ndresdju 32667 aciunf1lem 32680 gsumpart 33038 rlocf1 33245 fracfld 33275 eulerpartlemgvv 34341 eulerpartlemgh 34343 satfv0fvfmla0 35381 sategoelfvb 35387 prv1n 35399 msubff1 35524 msubvrs 35528 poimirlem17 37597 heiborlem7 37777 heiborlem8 37778 dvhvaddass 41054 dvhlveclem 41065 diblss 41127 aks6d1c3 42080 pellexlem5 42789 pellex 42791 dvnprodlem1 45867 hoicvr 46469 hoicvrrex 46477 ovn0lem 46486 ovnhoilem1 46522 ovnlecvr2 46531 ovolval5lem2 46574 |
Copyright terms: Public domain | W3C validator |