Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2nd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nd | ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndval 7807 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉} | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nda 6120 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
5 | 1, 4 | eqtri 2766 | 1 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-2nd 7805 |
This theorem is referenced by: op2ndd 7815 op2ndg 7817 2ndval2 7822 fo2ndres 7831 opreuopreu 7849 eloprabi 7876 fo2ndf 7933 f1o2ndf1 7934 seqomlem1 8251 seqomlem2 8252 xpmapenlem 8880 fseqenlem2 9712 axdc4lem 10142 iunfo 10226 archnq 10667 om2uzrdg 13604 uzrdgsuci 13608 fsum2dlem 15410 fprod2dlem 15618 ruclem8 15874 ruclem11 15877 eucalglt 16218 idfu2nd 17508 idfucl 17512 cofu2nd 17516 cofucl 17519 xpccatid 17821 prf2nd 17838 curf2ndf 17881 yonedalem22 17912 gaid 18820 2ndcctbss 22514 upxp 22682 uptx 22684 txkgen 22711 cnheiborlem 24023 ovollb2lem 24557 ovolctb 24559 ovoliunlem2 24572 ovolshftlem1 24578 ovolscalem1 24582 ovolicc1 24585 addsqnreup 26496 2sqreuop 26515 2sqreuopnn 26516 2sqreuoplt 26517 2sqreuopltb 26518 2sqreuopnnlt 26519 2sqreuopnnltb 26520 wlkswwlksf1o 28145 clwlkclwwlkfo 28274 ex-2nd 28710 cnnvs 28943 cnnvnm 28944 h2hsm 29238 h2hnm 29239 hhsssm 29521 hhssnm 29522 2ndimaxp 30885 2ndresdju 30887 aciunf1lem 30901 gsumpart 31217 eulerpartlemgvv 32243 eulerpartlemgh 32245 satfv0fvfmla0 33275 sategoelfvb 33281 prv1n 33293 msubff1 33418 msubvrs 33422 ot22ndd 33584 poimirlem17 35721 heiborlem7 35902 heiborlem8 35903 dvhvaddass 39038 dvhlveclem 39049 diblss 39111 pellexlem5 40571 pellex 40573 dvnprodlem1 43377 hoicvr 43976 hoicvrrex 43984 ovn0lem 43993 ovnhoilem1 44029 ovnlecvr2 44038 ovolval5lem2 44081 |
Copyright terms: Public domain | W3C validator |