| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2nd | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| Ref | Expression |
|---|---|
| op1st.1 | ⊢ 𝐴 ∈ V |
| op1st.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2nd | ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndval 7991 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉} | |
| 2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | op2nda 6217 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| 5 | 1, 4 | eqtri 2758 | 1 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ∪ cuni 4883 ran crn 5655 ‘cfv 6531 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-2nd 7989 |
| This theorem is referenced by: op2ndd 7999 op2ndg 8001 2ndval2 8006 fo2ndres 8015 opreuopreu 8033 eloprabi 8062 fo2ndf 8120 f1o2ndf1 8121 seqomlem1 8464 seqomlem2 8465 xpmapenlem 9158 fseqenlem2 10039 axdc4lem 10469 iunfo 10553 archnq 10994 om2uzrdg 13974 uzrdgsuci 13978 fsum2dlem 15786 fprod2dlem 15996 ruclem8 16255 ruclem11 16258 eucalglt 16604 idfu2nd 17890 idfucl 17894 cofu2nd 17898 cofucl 17901 xpccatid 18200 prf2nd 18217 curf2ndf 18259 yonedalem22 18290 gaid 19282 2ndcctbss 23393 upxp 23561 uptx 23563 txkgen 23590 cnheiborlem 24904 ovollb2lem 25441 ovolctb 25443 ovoliunlem2 25456 ovolshftlem1 25462 ovolscalem1 25466 ovolicc1 25469 addsqnreup 27406 2sqreuop 27425 2sqreuopnn 27426 2sqreuoplt 27427 2sqreuopltb 27428 2sqreuopnnlt 27429 2sqreuopnnltb 27430 precsexlem2 28162 precsexlem5 28165 om2noseqrdg 28250 noseqrdgsuc 28254 wlkswwlksf1o 29861 clwlkclwwlkfo 29990 ex-2nd 30426 cnnvs 30661 cnnvnm 30662 h2hsm 30956 h2hnm 30957 hhsssm 31239 hhssnm 31240 2ndimaxp 32624 2ndresdju 32627 aciunf1lem 32640 gsumpart 33051 rlocf1 33268 fracfld 33302 eulerpartlemgvv 34408 eulerpartlemgh 34410 satfv0fvfmla0 35435 sategoelfvb 35441 prv1n 35453 msubff1 35578 msubvrs 35582 poimirlem17 37661 heiborlem7 37841 heiborlem8 37842 dvhvaddass 41116 dvhlveclem 41127 diblss 41189 aks6d1c3 42136 pellexlem5 42856 pellex 42858 dvnprodlem1 45975 hoicvr 46577 hoicvrrex 46585 ovn0lem 46594 ovnhoilem1 46630 ovnlecvr2 46639 ovolval5lem2 46682 gpg3kgrtriex 48091 eloprab1st2nd 48843 swapf2fvala 49181 swapf2f1oaALT 49195 swapfcoa 49198 fuco21 49247 fucof21 49258 prcof2a 49299 prcof2 49300 |
| Copyright terms: Public domain | W3C validator |