Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfvlem Structured version   Visualization version   GIF version

Theorem sprsymrelfvlem 47495
Description: Lemma for sprsymrelf 47500 and sprsymrelfv 47499. (Contributed by AV, 19-Nov-2021.)
Assertion
Ref Expression
sprsymrelfvlem (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
Distinct variable groups:   𝑃,𝑐,𝑥,𝑦   𝑉,𝑐,𝑥,𝑦

Proof of Theorem sprsymrelfvlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑉 ∈ V)
2 eleq1 2817 . . . . . . . . . . . 12 (𝑐 = {𝑥, 𝑦} → (𝑐𝑃 ↔ {𝑥, 𝑦} ∈ 𝑃))
3 prsssprel 47493 . . . . . . . . . . . . . . 15 ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑥, 𝑦} ∈ 𝑃 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑉𝑦𝑉))
433exp 1119 . . . . . . . . . . . . . 14 (𝑃 ⊆ (Pairs‘𝑉) → ({𝑥, 𝑦} ∈ 𝑃 → ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑉𝑦𝑉))))
54com13 88 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉))))
65el2v 3457 . . . . . . . . . . . 12 ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉)))
72, 6biimtrdi 253 . . . . . . . . . . 11 (𝑐 = {𝑥, 𝑦} → (𝑐𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉))))
87com12 32 . . . . . . . . . 10 (𝑐𝑃 → (𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉))))
98rexlimiv 3128 . . . . . . . . 9 (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉)))
109com12 32 . . . . . . . 8 (𝑃 ⊆ (Pairs‘𝑉) → (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} → (𝑥𝑉𝑦𝑉)))
1110adantl 481 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} → (𝑥𝑉𝑦𝑉)))
1211imp 406 . . . . . 6 (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → (𝑥𝑉𝑦𝑉))
1312simpld 494 . . . . 5 (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → 𝑥𝑉)
1412simprd 495 . . . . 5 (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → 𝑦𝑉)
151, 1, 13, 14opabex2 8039 . . . 4 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ V)
16 elopab 5490 . . . . . . 7 (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}))
179adantl 481 . . . . . . . . . . . 12 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉)))
1817adantld 490 . . . . . . . . . . 11 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑥𝑉𝑦𝑉)))
1918imp 406 . . . . . . . . . 10 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑥𝑉𝑦𝑉))
20 eleq1 2817 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝑉 × 𝑉) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉)))
2120ad2antrr 726 . . . . . . . . . . 11 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉)))
22 opelxp 5677 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉) ↔ (𝑥𝑉𝑦𝑉))
2321, 22bitrdi 287 . . . . . . . . . 10 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ (𝑥𝑉𝑦𝑉)))
2419, 23mpbird 257 . . . . . . . . 9 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → 𝑝 ∈ (𝑉 × 𝑉))
2524ex 412 . . . . . . . 8 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉)))
2625exlimivv 1932 . . . . . . 7 (∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉)))
2716, 26sylbi 217 . . . . . 6 (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉)))
2827com12 32 . . . . 5 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ (𝑉 × 𝑉)))
2928ssrdv 3955 . . . 4 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ⊆ (𝑉 × 𝑉))
3015, 29elpwd 4572 . . 3 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
3130ex 412 . 2 (𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)))
32 fvprc 6853 . . . . 5 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
3332sseq2d 3982 . . . 4 𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 ⊆ ∅))
34 ss0b 4367 . . . 4 (𝑃 ⊆ ∅ ↔ 𝑃 = ∅)
3533, 34bitrdi 287 . . 3 𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 = ∅))
36 rex0 4326 . . . . . . 7 ¬ ∃𝑐 ∈ ∅ 𝑐 = {𝑥, 𝑦}
37 rexeq 3297 . . . . . . 7 (𝑃 = ∅ → (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ ∅ 𝑐 = {𝑥, 𝑦}))
3836, 37mtbiri 327 . . . . . 6 (𝑃 = ∅ → ¬ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦})
3938alrimivv 1928 . . . . 5 (𝑃 = ∅ → ∀𝑥𝑦 ¬ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦})
40 opab0 5517 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} = ∅ ↔ ∀𝑥𝑦 ¬ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦})
4139, 40sylibr 234 . . . 4 (𝑃 = ∅ → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} = ∅)
42 0elpw 5314 . . . 4 ∅ ∈ 𝒫 (𝑉 × 𝑉)
4341, 42eqeltrdi 2837 . . 3 (𝑃 = ∅ → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
4435, 43biimtrdi 253 . 2 𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)))
4531, 44pm2.61i 182 1 (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wrex 3054  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566  {cpr 4594  cop 4598  {copab 5172   × cxp 5639  cfv 6514  Pairscspr 47482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-spr 47483
This theorem is referenced by:  sprsymrelfv  47499  sprsymrelf  47500
  Copyright terms: Public domain W3C validator