| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑉 ∈ V) |
| 2 | | eleq1 2829 |
. . . . . . . . . . . 12
⊢ (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ 𝑃 ↔ {𝑥, 𝑦} ∈ 𝑃)) |
| 3 | | prsssprel 47475 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑥, 𝑦} ∈ 𝑃 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 4 | 3 | 3exp 1120 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ⊆ (Pairs‘𝑉) → ({𝑥, 𝑦} ∈ 𝑃 → ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
| 5 | 4 | com13 88 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
| 6 | 5 | el2v 3487 |
. . . . . . . . . . . 12
⊢ ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 7 | 2, 6 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
| 8 | 7 | com12 32 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝑃 → (𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
| 9 | 8 | rexlimiv 3148 |
. . . . . . . . 9
⊢
(∃𝑐 ∈
𝑃 𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 10 | 9 | com12 32 |
. . . . . . . 8
⊢ (𝑃 ⊆ (Pairs‘𝑉) → (∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦} → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 11 | 10 | adantl 481 |
. . . . . . 7
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦} → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 12 | 11 | imp 406 |
. . . . . 6
⊢ (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 13 | 12 | simpld 494 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → 𝑥 ∈ 𝑉) |
| 14 | 12 | simprd 495 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → 𝑦 ∈ 𝑉) |
| 15 | 1, 1, 13, 14 | opabex2 8082 |
. . . 4
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ V) |
| 16 | | elopab 5532 |
. . . . . . 7
⊢ (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑥∃𝑦(𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦})) |
| 17 | 9 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 18 | 17 | adantld 490 |
. . . . . . . . . . 11
⊢ ((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 19 | 18 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 20 | | eleq1 2829 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝑝 ∈ (𝑉 × 𝑉) ↔ 〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉))) |
| 21 | 20 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ 〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉))) |
| 22 | | opelxp 5721 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉) ↔ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 23 | 21, 22 | bitrdi 287 |
. . . . . . . . . 10
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 24 | 19, 23 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → 𝑝 ∈ (𝑉 × 𝑉)) |
| 25 | 24 | ex 412 |
. . . . . . . 8
⊢ ((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉))) |
| 26 | 25 | exlimivv 1932 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉))) |
| 27 | 16, 26 | sylbi 217 |
. . . . . 6
⊢ (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉))) |
| 28 | 27 | com12 32 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ (𝑉 × 𝑉))) |
| 29 | 28 | ssrdv 3989 |
. . . 4
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ⊆ (𝑉 × 𝑉)) |
| 30 | 15, 29 | elpwd 4606 |
. . 3
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |
| 31 | 30 | ex 412 |
. 2
⊢ (𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))) |
| 32 | | fvprc 6898 |
. . . . 5
⊢ (¬
𝑉 ∈ V →
(Pairs‘𝑉) =
∅) |
| 33 | 32 | sseq2d 4016 |
. . . 4
⊢ (¬
𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 ⊆ ∅)) |
| 34 | | ss0b 4401 |
. . . 4
⊢ (𝑃 ⊆ ∅ ↔ 𝑃 = ∅) |
| 35 | 33, 34 | bitrdi 287 |
. . 3
⊢ (¬
𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 = ∅)) |
| 36 | | rex0 4360 |
. . . . . . 7
⊢ ¬
∃𝑐 ∈ ∅
𝑐 = {𝑥, 𝑦} |
| 37 | | rexeq 3322 |
. . . . . . 7
⊢ (𝑃 = ∅ → (∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ ∅ 𝑐 = {𝑥, 𝑦})) |
| 38 | 36, 37 | mtbiri 327 |
. . . . . 6
⊢ (𝑃 = ∅ → ¬
∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) |
| 39 | 38 | alrimivv 1928 |
. . . . 5
⊢ (𝑃 = ∅ → ∀𝑥∀𝑦 ¬ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) |
| 40 | | opab0 5559 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} = ∅ ↔ ∀𝑥∀𝑦 ¬ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) |
| 41 | 39, 40 | sylibr 234 |
. . . 4
⊢ (𝑃 = ∅ → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} = ∅) |
| 42 | | 0elpw 5356 |
. . . 4
⊢ ∅
∈ 𝒫 (𝑉 ×
𝑉) |
| 43 | 41, 42 | eqeltrdi 2849 |
. . 3
⊢ (𝑃 = ∅ → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |
| 44 | 35, 43 | biimtrdi 253 |
. 2
⊢ (¬
𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))) |
| 45 | 31, 44 | pm2.61i 182 |
1
⊢ (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |