Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsnidel Structured version   Visualization version   GIF version

Theorem setsnidel 44829
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
setsidel.s (𝜑𝑆𝑉)
setsidel.b (𝜑𝐵𝑊)
setsidel.r 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
setsnidel.c (𝜑𝐶𝑋)
setsnidel.d (𝜑𝐷𝑌)
setsnidel.s (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
setsnidel.n (𝜑𝐴𝐶)
Assertion
Ref Expression
setsnidel (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)

Proof of Theorem setsnidel
StepHypRef Expression
1 setsnidel.c . . . . . 6 (𝜑𝐶𝑋)
21elexd 3452 . . . . 5 (𝜑𝐶 ∈ V)
3 setsnidel.n . . . . . 6 (𝜑𝐴𝐶)
43necomd 2999 . . . . 5 (𝜑𝐶𝐴)
5 eldifsn 4720 . . . . 5 (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶𝐴))
62, 4, 5sylanbrc 583 . . . 4 (𝜑𝐶 ∈ (V ∖ {𝐴}))
7 setsnidel.s . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
8 setsnidel.d . . . . 5 (𝜑𝐷𝑌)
9 opelres 5897 . . . . 5 (𝐷𝑌 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
108, 9syl 17 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
116, 7, 10mpbir2and 710 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})))
12 elun1 4110 . . 3 (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1311, 12syl 17 . 2 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
14 setsidel.r . . 3 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
15 setsidel.s . . . 4 (𝜑𝑆𝑉)
16 setsidel.b . . . 4 (𝜑𝐵𝑊)
17 setsval 16868 . . . 4 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1815, 16, 17syl2anc 584 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1914, 18eqtrid 2790 . 2 (𝜑𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2013, 19eleqtrrd 2842 1 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  cun 3885  {csn 4561  cop 4567  cres 5591  (class class class)co 7275   sSet csts 16864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-sets 16865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator