Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsnidel Structured version   Visualization version   GIF version

Theorem setsnidel 47391
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
setsidel.s (𝜑𝑆𝑉)
setsidel.b (𝜑𝐵𝑊)
setsidel.r 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
setsnidel.c (𝜑𝐶𝑋)
setsnidel.d (𝜑𝐷𝑌)
setsnidel.s (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
setsnidel.n (𝜑𝐴𝐶)
Assertion
Ref Expression
setsnidel (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)

Proof of Theorem setsnidel
StepHypRef Expression
1 setsnidel.c . . . . . 6 (𝜑𝐶𝑋)
21elexd 3483 . . . . 5 (𝜑𝐶 ∈ V)
3 setsnidel.n . . . . . 6 (𝜑𝐴𝐶)
43necomd 2987 . . . . 5 (𝜑𝐶𝐴)
5 eldifsn 4762 . . . . 5 (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶𝐴))
62, 4, 5sylanbrc 583 . . . 4 (𝜑𝐶 ∈ (V ∖ {𝐴}))
7 setsnidel.s . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
8 setsnidel.d . . . . 5 (𝜑𝐷𝑌)
9 opelres 5972 . . . . 5 (𝐷𝑌 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
108, 9syl 17 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
116, 7, 10mpbir2and 713 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})))
12 elun1 4157 . . 3 (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1311, 12syl 17 . 2 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
14 setsidel.r . . 3 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
15 setsidel.s . . . 4 (𝜑𝑆𝑉)
16 setsidel.b . . . 4 (𝜑𝐵𝑊)
17 setsval 17186 . . . 4 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1815, 16, 17syl2anc 584 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1914, 18eqtrid 2782 . 2 (𝜑𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2013, 19eleqtrrd 2837 1 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cdif 3923  cun 3924  {csn 4601  cop 4607  cres 5656  (class class class)co 7405   sSet csts 17182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-sets 17183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator