Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsnidel Structured version   Visualization version   GIF version

Theorem setsnidel 47487
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
setsidel.s (𝜑𝑆𝑉)
setsidel.b (𝜑𝐵𝑊)
setsidel.r 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
setsnidel.c (𝜑𝐶𝑋)
setsnidel.d (𝜑𝐷𝑌)
setsnidel.s (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
setsnidel.n (𝜑𝐴𝐶)
Assertion
Ref Expression
setsnidel (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)

Proof of Theorem setsnidel
StepHypRef Expression
1 setsnidel.c . . . . . 6 (𝜑𝐶𝑋)
21elexd 3460 . . . . 5 (𝜑𝐶 ∈ V)
3 setsnidel.n . . . . . 6 (𝜑𝐴𝐶)
43necomd 2983 . . . . 5 (𝜑𝐶𝐴)
5 eldifsn 4735 . . . . 5 (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶𝐴))
62, 4, 5sylanbrc 583 . . . 4 (𝜑𝐶 ∈ (V ∖ {𝐴}))
7 setsnidel.s . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
8 setsnidel.d . . . . 5 (𝜑𝐷𝑌)
9 opelres 5933 . . . . 5 (𝐷𝑌 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
108, 9syl 17 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
116, 7, 10mpbir2and 713 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})))
12 elun1 4129 . . 3 (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1311, 12syl 17 . 2 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
14 setsidel.r . . 3 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
15 setsidel.s . . . 4 (𝜑𝑆𝑉)
16 setsidel.b . . . 4 (𝜑𝐵𝑊)
17 setsval 17078 . . . 4 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1815, 16, 17syl2anc 584 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1914, 18eqtrid 2778 . 2 (𝜑𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2013, 19eleqtrrd 2834 1 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cun 3895  {csn 4573  cop 4579  cres 5616  (class class class)co 7346   sSet csts 17074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sets 17075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator