| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setsnidel | Structured version Visualization version GIF version | ||
| Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| setsidel.r | ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) |
| setsnidel.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| setsnidel.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| setsnidel.s | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) |
| setsnidel.n | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| setsnidel | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsnidel.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 2 | 1 | elexd 3471 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ V) |
| 3 | setsnidel.n | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 4 | 3 | necomd 2980 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 5 | eldifsn 4750 | . . . . 5 ⊢ (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) | |
| 6 | 2, 4, 5 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (V ∖ {𝐴})) |
| 7 | setsnidel.s | . . . 4 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) | |
| 8 | setsnidel.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 9 | opelres 5956 | . . . . 5 ⊢ (𝐷 ∈ 𝑌 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) |
| 11 | 6, 7, 10 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴}))) |
| 12 | elun1 4145 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 14 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) | |
| 15 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 16 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 17 | setsval 17137 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 18 | 15, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 19 | 14, 18 | eqtrid 2776 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 20 | 13, 19 | eleqtrrd 2831 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 {csn 4589 〈cop 4595 ↾ cres 5640 (class class class)co 7387 sSet csts 17133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sets 17134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |