| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setsnidel | Structured version Visualization version GIF version | ||
| Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| setsidel.r | ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) |
| setsnidel.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| setsnidel.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| setsnidel.s | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) |
| setsnidel.n | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| setsnidel | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsnidel.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 2 | 1 | elexd 3460 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ V) |
| 3 | setsnidel.n | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 4 | 3 | necomd 2983 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 5 | eldifsn 4735 | . . . . 5 ⊢ (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) | |
| 6 | 2, 4, 5 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (V ∖ {𝐴})) |
| 7 | setsnidel.s | . . . 4 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) | |
| 8 | setsnidel.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 9 | opelres 5933 | . . . . 5 ⊢ (𝐷 ∈ 𝑌 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) |
| 11 | 6, 7, 10 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴}))) |
| 12 | elun1 4129 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 14 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) | |
| 15 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 16 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 17 | setsval 17078 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 18 | 15, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 19 | 14, 18 | eqtrid 2778 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 20 | 13, 19 | eleqtrrd 2834 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 {csn 4573 〈cop 4579 ↾ cres 5616 (class class class)co 7346 sSet csts 17074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17075 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |