Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsnidel Structured version   Visualization version   GIF version

Theorem setsnidel 47302
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
setsidel.s (𝜑𝑆𝑉)
setsidel.b (𝜑𝐵𝑊)
setsidel.r 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
setsnidel.c (𝜑𝐶𝑋)
setsnidel.d (𝜑𝐷𝑌)
setsnidel.s (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
setsnidel.n (𝜑𝐴𝐶)
Assertion
Ref Expression
setsnidel (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)

Proof of Theorem setsnidel
StepHypRef Expression
1 setsnidel.c . . . . . 6 (𝜑𝐶𝑋)
21elexd 3502 . . . . 5 (𝜑𝐶 ∈ V)
3 setsnidel.n . . . . . 6 (𝜑𝐴𝐶)
43necomd 2994 . . . . 5 (𝜑𝐶𝐴)
5 eldifsn 4791 . . . . 5 (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶𝐴))
62, 4, 5sylanbrc 583 . . . 4 (𝜑𝐶 ∈ (V ∖ {𝐴}))
7 setsnidel.s . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)
8 setsnidel.d . . . . 5 (𝜑𝐷𝑌)
9 opelres 6006 . . . . 5 (𝐷𝑌 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
108, 9syl 17 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆)))
116, 7, 10mpbir2and 713 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})))
12 elun1 4192 . . 3 (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1311, 12syl 17 . 2 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
14 setsidel.r . . 3 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
15 setsidel.s . . . 4 (𝜑𝑆𝑉)
16 setsidel.b . . . 4 (𝜑𝐵𝑊)
17 setsval 17201 . . . 4 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1815, 16, 17syl2anc 584 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1914, 18eqtrid 2787 . 2 (𝜑𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2013, 19eleqtrrd 2842 1 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  cun 3961  {csn 4631  cop 4637  cres 5691  (class class class)co 7431   sSet csts 17197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator