Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > setsnidel | Structured version Visualization version GIF version |
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
setsidel.r | ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) |
setsnidel.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
setsnidel.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
setsnidel.s | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) |
setsnidel.n | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
setsnidel | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsnidel.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
2 | 1 | elexd 3442 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ V) |
3 | setsnidel.n | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
4 | 3 | necomd 2998 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
5 | eldifsn 4717 | . . . . 5 ⊢ (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) | |
6 | 2, 4, 5 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (V ∖ {𝐴})) |
7 | setsnidel.s | . . . 4 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) | |
8 | setsnidel.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
9 | opelres 5886 | . . . . 5 ⊢ (𝐷 ∈ 𝑌 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) |
11 | 6, 7, 10 | mpbir2and 709 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴}))) |
12 | elun1 4106 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
14 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) | |
15 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
16 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
17 | setsval 16796 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
18 | 15, 16, 17 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
19 | 14, 18 | syl5eq 2791 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
20 | 13, 19 | eleqtrrd 2842 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 {csn 4558 〈cop 4564 ↾ cres 5582 (class class class)co 7255 sSet csts 16792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sets 16793 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |