![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setsnidel | Structured version Visualization version GIF version |
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
setsidel.r | ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) |
setsnidel.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
setsnidel.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
setsnidel.s | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) |
setsnidel.n | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
setsnidel | ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsnidel.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
2 | 1 | elexd 3502 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ V) |
3 | setsnidel.n | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
4 | 3 | necomd 2994 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
5 | eldifsn 4791 | . . . . 5 ⊢ (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) | |
6 | 2, 4, 5 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (V ∖ {𝐴})) |
7 | setsnidel.s | . . . 4 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) | |
8 | setsnidel.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
9 | opelres 6006 | . . . . 5 ⊢ (𝐷 ∈ 𝑌 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ 〈𝐶, 𝐷〉 ∈ 𝑆))) |
11 | 6, 7, 10 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴}))) |
12 | elun1 4192 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝑆 ↾ (V ∖ {𝐴})) → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
14 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) | |
15 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
16 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
17 | setsval 17201 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
18 | 15, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
19 | 14, 18 | eqtrid 2787 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
20 | 13, 19 | eleqtrrd 2842 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 {csn 4631 〈cop 4637 ↾ cres 5691 (class class class)co 7431 sSet csts 17197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-sets 17198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |