![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setsnidel | Structured version Visualization version GIF version |
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
setsidel.r | ⊢ 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩) |
setsnidel.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
setsnidel.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
setsnidel.s | ⊢ (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆) |
setsnidel.n | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
setsnidel | ⊢ (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsnidel.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
2 | 1 | elexd 3487 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ V) |
3 | setsnidel.n | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
4 | 3 | necomd 2988 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
5 | eldifsn 4782 | . . . . 5 ⊢ (𝐶 ∈ (V ∖ {𝐴}) ↔ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) | |
6 | 2, 4, 5 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (V ∖ {𝐴})) |
7 | setsnidel.s | . . . 4 ⊢ (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆) | |
8 | setsnidel.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
9 | opelres 5977 | . . . . 5 ⊢ (𝐷 ∈ 𝑌 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆))) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) ↔ (𝐶 ∈ (V ∖ {𝐴}) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑆))) |
11 | 6, 7, 10 | mpbir2and 710 | . . 3 ⊢ (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴}))) |
12 | elun1 4168 | . . 3 ⊢ (⟨𝐶, 𝐷⟩ ∈ (𝑆 ↾ (V ∖ {𝐴})) → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → ⟨𝐶, 𝐷⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
14 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩) | |
15 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
16 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
17 | setsval 17098 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) | |
18 | 15, 16, 17 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
19 | 14, 18 | eqtrid 2776 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
20 | 13, 19 | eleqtrrd 2828 | 1 ⊢ (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 ∖ cdif 3937 ∪ cun 3938 {csn 4620 ⟨cop 4626 ↾ cres 5668 (class class class)co 7401 sSet csts 17094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-res 5678 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-sets 17095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |