MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oopb Structured version   Visualization version   GIF version

Theorem isof1oopb 7259
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oopb (𝐻:𝐴1-1-onto𝐵𝐻 Isom (V × V), (V × V)(𝐴, 𝐵))

Proof of Theorem isof1oopb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . . . . . . . 9 (𝐻𝑥) ∈ V
2 fvex 6835 . . . . . . . . 9 (𝐻𝑦) ∈ V
31, 2opelvv 5656 . . . . . . . 8 ⟨(𝐻𝑥), (𝐻𝑦)⟩ ∈ (V × V)
4 df-br 5092 . . . . . . . 8 ((𝐻𝑥)(V × V)(𝐻𝑦) ↔ ⟨(𝐻𝑥), (𝐻𝑦)⟩ ∈ (V × V))
53, 4mpbir 231 . . . . . . 7 (𝐻𝑥)(V × V)(𝐻𝑦)
65a1i 11 . . . . . 6 (𝑥(V × V)𝑦 → (𝐻𝑥)(V × V)(𝐻𝑦))
7 opelvvg 5657 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → ⟨𝑥, 𝑦⟩ ∈ (V × V))
8 df-br 5092 . . . . . . . 8 (𝑥(V × V)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V))
97, 8sylibr 234 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → 𝑥(V × V)𝑦)
109a1d 25 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝐻𝑥)(V × V)(𝐻𝑦) → 𝑥(V × V)𝑦))
116, 10impbid2 226 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1211adantl 481 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1312ralrimivva 3175 . . 3 (𝐻:𝐴1-1-onto𝐵 → ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1413pm4.71i 559 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦))))
15 df-isom 6490 . 2 (𝐻 Isom (V × V), (V × V)(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦))))
1614, 15bitr4i 278 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom (V × V), (V × V)(𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wral 3047  Vcvv 3436  cop 4582   class class class wbr 5091   × cxp 5614  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-iota 6437  df-fv 6489  df-isom 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator