MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oopb Structured version   Visualization version   GIF version

Theorem isof1oopb 6771
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oopb (𝐻:𝐴1-1-onto𝐵𝐻 Isom (V × V), (V × V)(𝐴, 𝐵))

Proof of Theorem isof1oopb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6392 . . . . . . . . 9 (𝐻𝑥) ∈ V
2 fvex 6392 . . . . . . . . 9 (𝐻𝑦) ∈ V
31, 2opelvv 5318 . . . . . . . 8 ⟨(𝐻𝑥), (𝐻𝑦)⟩ ∈ (V × V)
4 df-br 4812 . . . . . . . 8 ((𝐻𝑥)(V × V)(𝐻𝑦) ↔ ⟨(𝐻𝑥), (𝐻𝑦)⟩ ∈ (V × V))
53, 4mpbir 222 . . . . . . 7 (𝐻𝑥)(V × V)(𝐻𝑦)
65a1i 11 . . . . . 6 (𝑥(V × V)𝑦 → (𝐻𝑥)(V × V)(𝐻𝑦))
7 opelvvg 5319 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → ⟨𝑥, 𝑦⟩ ∈ (V × V))
8 df-br 4812 . . . . . . . 8 (𝑥(V × V)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V))
97, 8sylibr 225 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → 𝑥(V × V)𝑦)
109a1d 25 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝐻𝑥)(V × V)(𝐻𝑦) → 𝑥(V × V)𝑦))
116, 10impbid2 217 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1211adantl 473 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1312ralrimivva 3118 . . 3 (𝐻:𝐴1-1-onto𝐵 → ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1413pm4.71i 555 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦))))
15 df-isom 6079 . 2 (𝐻 Isom (V × V), (V × V)(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦))))
1614, 15bitr4i 269 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom (V × V), (V × V)(𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  wcel 2155  wral 3055  Vcvv 3350  cop 4342   class class class wbr 4811   × cxp 5277  1-1-ontowf1o 6069  cfv 6070   Isom wiso 6071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-xp 5285  df-iota 6033  df-fv 6078  df-isom 6079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator