Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isof1oopb | Structured version Visualization version GIF version |
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.) |
Ref | Expression |
---|---|
isof1oopb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6781 | . . . . . . . . 9 ⊢ (𝐻‘𝑥) ∈ V | |
2 | fvex 6781 | . . . . . . . . 9 ⊢ (𝐻‘𝑦) ∈ V | |
3 | 1, 2 | opelvv 5627 | . . . . . . . 8 ⊢ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V) |
4 | df-br 5079 | . . . . . . . 8 ⊢ ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) ↔ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V)) | |
5 | 3, 4 | mpbir 230 | . . . . . . 7 ⊢ (𝐻‘𝑥)(V × V)(𝐻‘𝑦) |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥(V × V)𝑦 → (𝐻‘𝑥)(V × V)(𝐻‘𝑦)) |
7 | opelvvg 5628 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × V)) | |
8 | df-br 5079 | . . . . . . . 8 ⊢ (𝑥(V × V)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (V × V)) | |
9 | 7, 8 | sylibr 233 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥(V × V)𝑦) |
10 | 9 | a1d 25 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) → 𝑥(V × V)𝑦)) |
11 | 6, 10 | impbid2 225 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
13 | 12 | ralrimivva 3116 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
14 | 13 | pm4.71i 559 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) |
15 | df-isom 6439 | . 2 ⊢ (𝐻 Isom (V × V), (V × V)(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) | |
16 | 14, 15 | bitr4i 277 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 〈cop 4572 class class class wbr 5078 × cxp 5586 –1-1-onto→wf1o 6429 ‘cfv 6430 Isom wiso 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-iota 6388 df-fv 6438 df-isom 6439 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |