MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oopb Structured version   Visualization version   GIF version

Theorem isof1oopb 7303
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oopb (𝐻:𝐴1-1-onto𝐵𝐻 Isom (V × V), (V × V)(𝐴, 𝐵))

Proof of Theorem isof1oopb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6874 . . . . . . . . 9 (𝐻𝑥) ∈ V
2 fvex 6874 . . . . . . . . 9 (𝐻𝑦) ∈ V
31, 2opelvv 5681 . . . . . . . 8 ⟨(𝐻𝑥), (𝐻𝑦)⟩ ∈ (V × V)
4 df-br 5111 . . . . . . . 8 ((𝐻𝑥)(V × V)(𝐻𝑦) ↔ ⟨(𝐻𝑥), (𝐻𝑦)⟩ ∈ (V × V))
53, 4mpbir 231 . . . . . . 7 (𝐻𝑥)(V × V)(𝐻𝑦)
65a1i 11 . . . . . 6 (𝑥(V × V)𝑦 → (𝐻𝑥)(V × V)(𝐻𝑦))
7 opelvvg 5682 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → ⟨𝑥, 𝑦⟩ ∈ (V × V))
8 df-br 5111 . . . . . . . 8 (𝑥(V × V)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V))
97, 8sylibr 234 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → 𝑥(V × V)𝑦)
109a1d 25 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝐻𝑥)(V × V)(𝐻𝑦) → 𝑥(V × V)𝑦))
116, 10impbid2 226 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1211adantl 481 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1312ralrimivva 3181 . . 3 (𝐻:𝐴1-1-onto𝐵 → ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦)))
1413pm4.71i 559 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦))))
15 df-isom 6523 . 2 (𝐻 Isom (V × V), (V × V)(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(V × V)𝑦 ↔ (𝐻𝑥)(V × V)(𝐻𝑦))))
1614, 15bitr4i 278 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom (V × V), (V × V)(𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wral 3045  Vcvv 3450  cop 4598   class class class wbr 5110   × cxp 5639  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-iota 6467  df-fv 6522  df-isom 6523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator