| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1oopb | Structured version Visualization version GIF version | ||
| Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.) |
| Ref | Expression |
|---|---|
| isof1oopb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . . . . . . . 9 ⊢ (𝐻‘𝑥) ∈ V | |
| 2 | fvex 6841 | . . . . . . . . 9 ⊢ (𝐻‘𝑦) ∈ V | |
| 3 | 1, 2 | opelvv 5659 | . . . . . . . 8 ⊢ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V) |
| 4 | df-br 5094 | . . . . . . . 8 ⊢ ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) ↔ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V)) | |
| 5 | 3, 4 | mpbir 231 | . . . . . . 7 ⊢ (𝐻‘𝑥)(V × V)(𝐻‘𝑦) |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥(V × V)𝑦 → (𝐻‘𝑥)(V × V)(𝐻‘𝑦)) |
| 7 | opelvvg 5660 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × V)) | |
| 8 | df-br 5094 | . . . . . . . 8 ⊢ (𝑥(V × V)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (V × V)) | |
| 9 | 7, 8 | sylibr 234 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥(V × V)𝑦) |
| 10 | 9 | a1d 25 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) → 𝑥(V × V)𝑦)) |
| 11 | 6, 10 | impbid2 226 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
| 13 | 12 | ralrimivva 3176 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
| 14 | 13 | pm4.71i 559 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) |
| 15 | df-isom 6495 | . 2 ⊢ (𝐻 Isom (V × V), (V × V)(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) | |
| 16 | 14, 15 | bitr4i 278 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 〈cop 4581 class class class wbr 5093 × cxp 5617 –1-1-onto→wf1o 6485 ‘cfv 6486 Isom wiso 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-iota 6442 df-fv 6494 df-isom 6495 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |