![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opiedgfv | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opiedgfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5718 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ⟨𝑉, 𝐸⟩ ∈ (V × V)) | |
2 | opiedgval 28530 | . . 3 ⊢ (⟨𝑉, 𝐸⟩ ∈ (V × V) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩)) |
4 | op2ndg 7991 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (2nd ‘⟨𝑉, 𝐸⟩) = 𝐸) | |
5 | 3, 4 | eqtrd 2771 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⟨cop 4635 × cxp 5675 ‘cfv 6544 2nd c2nd 7977 iEdgciedg 28521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-2nd 7979 df-iedg 28523 |
This theorem is referenced by: opiedgov 28532 opiedgfvi 28534 gropd 28555 edgopval 28575 isuhgrop 28594 uhgrunop 28599 upgrop 28618 upgr0eop 28638 upgr1eop 28639 upgrunop 28643 umgrunop 28645 isuspgrop 28685 isusgrop 28686 ausgrusgrb 28689 usgr0eop 28767 uspgr1eop 28768 usgr1eop 28771 usgrexmpllem 28781 uhgrspan1lem3 28823 upgrres1lem3 28833 fusgrfisbase 28849 fusgrfisstep 28850 usgrexi 28962 cusgrexi 28964 p1evtxdeqlem 29033 p1evtxdeq 29034 p1evtxdp1 29035 uspgrloopiedg 29038 umgr2v2eiedg 29044 wlk2v2e 29674 eupthvdres 29752 eupth2lemb 29754 konigsbergiedg 29764 strisomgrop 46808 ushrisomgr 46809 |
Copyright terms: Public domain | W3C validator |