![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opiedgfv | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opiedgfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5715 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ⟨𝑉, 𝐸⟩ ∈ (V × V)) | |
2 | opiedgval 28255 | . . 3 ⊢ (⟨𝑉, 𝐸⟩ ∈ (V × V) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩)) |
4 | op2ndg 7984 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (2nd ‘⟨𝑉, 𝐸⟩) = 𝐸) | |
5 | 3, 4 | eqtrd 2772 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 × cxp 5673 ‘cfv 6540 2nd c2nd 7970 iEdgciedg 28246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-2nd 7972 df-iedg 28248 |
This theorem is referenced by: opiedgov 28257 opiedgfvi 28259 gropd 28280 edgopval 28300 isuhgrop 28319 uhgrunop 28324 upgrop 28343 upgr0eop 28363 upgr1eop 28364 upgrunop 28368 umgrunop 28370 isuspgrop 28410 isusgrop 28411 ausgrusgrb 28414 usgr0eop 28492 uspgr1eop 28493 usgr1eop 28496 usgrexmpllem 28506 uhgrspan1lem3 28548 upgrres1lem3 28558 fusgrfisbase 28574 fusgrfisstep 28575 usgrexi 28687 cusgrexi 28689 p1evtxdeqlem 28758 p1evtxdeq 28759 p1evtxdp1 28760 uspgrloopiedg 28763 umgr2v2eiedg 28769 wlk2v2e 29399 eupthvdres 29477 eupth2lemb 29479 konigsbergiedg 29489 strisomgrop 46494 ushrisomgr 46495 |
Copyright terms: Public domain | W3C validator |