| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opiedgfv | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| opiedgfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvvg 5660 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
| 2 | opiedgval 28991 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) |
| 4 | op2ndg 7940 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (2nd ‘〈𝑉, 𝐸〉) = 𝐸) | |
| 5 | 3, 4 | eqtrd 2766 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4581 × cxp 5617 ‘cfv 6487 2nd c2nd 7926 iEdgciedg 28982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6443 df-fun 6489 df-fv 6495 df-2nd 7928 df-iedg 28984 |
| This theorem is referenced by: opiedgov 28993 opiedgfvi 28995 gropd 29016 edgopval 29036 isuhgrop 29055 uhgrunop 29060 upgrop 29079 upgr0eop 29099 upgr1eop 29100 upgrunop 29104 umgrunop 29106 isuspgrop 29146 isusgrop 29147 ausgrusgrb 29150 usgr0eop 29231 uspgr1eop 29232 usgr1eop 29235 usgrexmpllem 29245 uhgrspan1lem3 29287 upgrres1lem3 29297 fusgrfisbase 29313 fusgrfisstep 29314 usgrexi 29426 cusgrexi 29428 p1evtxdeqlem 29498 p1evtxdeq 29499 p1evtxdp1 29500 uspgrloopiedg 29503 umgr2v2eiedg 29509 wlk2v2e 30144 eupthvdres 30222 eupth2lemb 30224 konigsbergiedg 30234 isubgriedg 47968 opstrgric 48031 ushggricedg 48032 usgrexmpl1edg 48129 usgrexmpl2edg 48134 |
| Copyright terms: Public domain | W3C validator |