| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opiedgfv | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| opiedgfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvvg 5682 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
| 2 | opiedgval 28940 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) |
| 4 | op2ndg 7984 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (2nd ‘〈𝑉, 𝐸〉) = 𝐸) | |
| 5 | 3, 4 | eqtrd 2765 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 × cxp 5639 ‘cfv 6514 2nd c2nd 7970 iEdgciedg 28931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-2nd 7972 df-iedg 28933 |
| This theorem is referenced by: opiedgov 28942 opiedgfvi 28944 gropd 28965 edgopval 28985 isuhgrop 29004 uhgrunop 29009 upgrop 29028 upgr0eop 29048 upgr1eop 29049 upgrunop 29053 umgrunop 29055 isuspgrop 29095 isusgrop 29096 ausgrusgrb 29099 usgr0eop 29180 uspgr1eop 29181 usgr1eop 29184 usgrexmpllem 29194 uhgrspan1lem3 29236 upgrres1lem3 29246 fusgrfisbase 29262 fusgrfisstep 29263 usgrexi 29375 cusgrexi 29377 p1evtxdeqlem 29447 p1evtxdeq 29448 p1evtxdp1 29449 uspgrloopiedg 29452 umgr2v2eiedg 29458 wlk2v2e 30093 eupthvdres 30171 eupth2lemb 30173 konigsbergiedg 30183 isubgriedg 47867 opstrgric 47930 ushggricedg 47931 usgrexmpl1edg 48019 usgrexmpl2edg 48024 |
| Copyright terms: Public domain | W3C validator |