Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opiedgfv | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opiedgfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5630 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
2 | opiedgval 27387 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) |
4 | op2ndg 7838 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (2nd ‘〈𝑉, 𝐸〉) = 𝐸) | |
5 | 3, 4 | eqtrd 2780 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 〈cop 4573 × cxp 5588 ‘cfv 6432 2nd c2nd 7824 iEdgciedg 27378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fv 6440 df-2nd 7826 df-iedg 27380 |
This theorem is referenced by: opiedgov 27389 opiedgfvi 27391 gropd 27412 edgopval 27432 isuhgrop 27451 uhgrunop 27456 upgrop 27475 upgr0eop 27495 upgr1eop 27496 upgrunop 27500 umgrunop 27502 isuspgrop 27542 isusgrop 27543 ausgrusgrb 27546 usgr0eop 27624 uspgr1eop 27625 usgr1eop 27628 usgrexmpllem 27638 uhgrspan1lem3 27680 upgrres1lem3 27690 fusgrfisbase 27706 fusgrfisstep 27707 usgrexi 27819 cusgrexi 27821 p1evtxdeqlem 27890 p1evtxdeq 27891 p1evtxdp1 27892 uspgrloopiedg 27895 umgr2v2eiedg 27901 wlk2v2e 28530 eupthvdres 28608 eupth2lemb 28610 konigsbergiedg 28620 strisomgrop 45271 ushrisomgr 45272 |
Copyright terms: Public domain | W3C validator |