Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opiedgfv | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opiedgfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5629 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
2 | opiedgval 27376 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) |
4 | op2ndg 7844 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (2nd ‘〈𝑉, 𝐸〉) = 𝐸) | |
5 | 3, 4 | eqtrd 2778 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 × cxp 5587 ‘cfv 6433 2nd c2nd 7830 iEdgciedg 27367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 df-iedg 27369 |
This theorem is referenced by: opiedgov 27378 opiedgfvi 27380 gropd 27401 edgopval 27421 isuhgrop 27440 uhgrunop 27445 upgrop 27464 upgr0eop 27484 upgr1eop 27485 upgrunop 27489 umgrunop 27491 isuspgrop 27531 isusgrop 27532 ausgrusgrb 27535 usgr0eop 27613 uspgr1eop 27614 usgr1eop 27617 usgrexmpllem 27627 uhgrspan1lem3 27669 upgrres1lem3 27679 fusgrfisbase 27695 fusgrfisstep 27696 usgrexi 27808 cusgrexi 27810 p1evtxdeqlem 27879 p1evtxdeq 27880 p1evtxdp1 27881 uspgrloopiedg 27884 umgr2v2eiedg 27890 wlk2v2e 28521 eupthvdres 28599 eupth2lemb 28601 konigsbergiedg 28611 strisomgrop 45292 ushrisomgr 45293 |
Copyright terms: Public domain | W3C validator |