MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgfv Structured version   Visualization version   GIF version

Theorem opiedgfv 27280
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opiedgfv ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)

Proof of Theorem opiedgfv
StepHypRef Expression
1 opelvvg 5620 . . 3 ((𝑉𝑋𝐸𝑌) → ⟨𝑉, 𝐸⟩ ∈ (V × V))
2 opiedgval 27279 . . 3 (⟨𝑉, 𝐸⟩ ∈ (V × V) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩))
31, 2syl 17 . 2 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩))
4 op2ndg 7817 . 2 ((𝑉𝑋𝐸𝑌) → (2nd ‘⟨𝑉, 𝐸⟩) = 𝐸)
53, 4eqtrd 2778 1 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  cfv 6418  2nd c2nd 7803  iEdgciedg 27270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-2nd 7805  df-iedg 27272
This theorem is referenced by:  opiedgov  27281  opiedgfvi  27283  gropd  27304  edgopval  27324  isuhgrop  27343  uhgrunop  27348  upgrop  27367  upgr0eop  27387  upgr1eop  27388  upgrunop  27392  umgrunop  27394  isuspgrop  27434  isusgrop  27435  ausgrusgrb  27438  usgr0eop  27516  uspgr1eop  27517  usgr1eop  27520  usgrexmpllem  27530  uhgrspan1lem3  27572  upgrres1lem3  27582  fusgrfisbase  27598  fusgrfisstep  27599  usgrexi  27711  cusgrexi  27713  p1evtxdeqlem  27782  p1evtxdeq  27783  p1evtxdp1  27784  uspgrloopiedg  27787  umgr2v2eiedg  27793  wlk2v2e  28422  eupthvdres  28500  eupth2lemb  28502  konigsbergiedg  28512  strisomgrop  45180  ushrisomgr  45181
  Copyright terms: Public domain W3C validator