![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opiedgfv | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opiedgfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5741 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
2 | opiedgval 29041 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = (2nd ‘〈𝑉, 𝐸〉)) |
4 | op2ndg 8043 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (2nd ‘〈𝑉, 𝐸〉) = 𝐸) | |
5 | 3, 4 | eqtrd 2780 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 ‘cfv 6573 2nd c2nd 8029 iEdgciedg 29032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-2nd 8031 df-iedg 29034 |
This theorem is referenced by: opiedgov 29043 opiedgfvi 29045 gropd 29066 edgopval 29086 isuhgrop 29105 uhgrunop 29110 upgrop 29129 upgr0eop 29149 upgr1eop 29150 upgrunop 29154 umgrunop 29156 isuspgrop 29196 isusgrop 29197 ausgrusgrb 29200 usgr0eop 29281 uspgr1eop 29282 usgr1eop 29285 usgrexmpllem 29295 uhgrspan1lem3 29337 upgrres1lem3 29347 fusgrfisbase 29363 fusgrfisstep 29364 usgrexi 29476 cusgrexi 29478 p1evtxdeqlem 29548 p1evtxdeq 29549 p1evtxdp1 29550 uspgrloopiedg 29553 umgr2v2eiedg 29559 wlk2v2e 30189 eupthvdres 30267 eupth2lemb 30269 konigsbergiedg 30279 isubgriedg 47735 opstrgric 47779 ushggricedg 47780 usgrexmpl1edg 47839 usgrexmpl2edg 47844 |
Copyright terms: Public domain | W3C validator |