MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgfv Structured version   Visualization version   GIF version

Theorem opiedgfv 28978
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opiedgfv ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)

Proof of Theorem opiedgfv
StepHypRef Expression
1 opelvvg 5655 . . 3 ((𝑉𝑋𝐸𝑌) → ⟨𝑉, 𝐸⟩ ∈ (V × V))
2 opiedgval 28977 . . 3 (⟨𝑉, 𝐸⟩ ∈ (V × V) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩))
31, 2syl 17 . 2 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = (2nd ‘⟨𝑉, 𝐸⟩))
4 op2ndg 7929 . 2 ((𝑉𝑋𝐸𝑌) → (2nd ‘⟨𝑉, 𝐸⟩) = 𝐸)
53, 4eqtrd 2765 1 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  cop 4580   × cxp 5612  cfv 6477  2nd c2nd 7915  iEdgciedg 28968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fv 6485  df-2nd 7917  df-iedg 28970
This theorem is referenced by:  opiedgov  28979  opiedgfvi  28981  gropd  29002  edgopval  29022  isuhgrop  29041  uhgrunop  29046  upgrop  29065  upgr0eop  29085  upgr1eop  29086  upgrunop  29090  umgrunop  29092  isuspgrop  29132  isusgrop  29133  ausgrusgrb  29136  usgr0eop  29217  uspgr1eop  29218  usgr1eop  29221  usgrexmpllem  29231  uhgrspan1lem3  29273  upgrres1lem3  29283  fusgrfisbase  29299  fusgrfisstep  29300  usgrexi  29412  cusgrexi  29414  p1evtxdeqlem  29484  p1evtxdeq  29485  p1evtxdp1  29486  uspgrloopiedg  29489  umgr2v2eiedg  29495  wlk2v2e  30127  eupthvdres  30205  eupth2lemb  30207  konigsbergiedg  30217  isubgriedg  47873  opstrgric  47936  ushggricedg  47937  usgrexmpl1edg  48034  usgrexmpl2edg  48039
  Copyright terms: Public domain W3C validator