![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opvtxfv | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opvtxfv | ⢠((ð â ð ⧠ðž â ð) â (Vtxââšð, ðžâ©) = ð) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5718 | . . 3 ⢠((ð â ð ⧠ðž â ð) â âšð, ðžâ© â (V à V)) | |
2 | opvtxval 28263 | . . 3 ⢠(âšð, ðžâ© â (V à V) â (Vtxââšð, ðžâ©) = (1st ââšð, ðžâ©)) | |
3 | 1, 2 | syl 17 | . 2 ⢠((ð â ð ⧠ðž â ð) â (Vtxââšð, ðžâ©) = (1st ââšð, ðžâ©)) |
4 | op1stg 7987 | . 2 ⢠((ð â ð ⧠ðž â ð) â (1st ââšð, ðžâ©) = ð) | |
5 | 3, 4 | eqtrd 2773 | 1 ⢠((ð â ð ⧠ðž â ð) â (Vtxââšð, ðžâ©) = ð) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 ⧠wa 397 = wceq 1542 â wcel 2107 Vcvv 3475 âšcop 4635 à cxp 5675 âcfv 6544 1st c1st 7973 Vtxcvtx 28256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 df-vtx 28258 |
This theorem is referenced by: opvtxov 28265 opvtxfvi 28269 gropd 28291 isuhgrop 28330 uhgrunop 28335 upgrop 28354 upgr1eop 28375 upgrunop 28379 umgrunop 28381 isuspgrop 28421 isusgrop 28422 ausgrusgrb 28425 uspgr1eop 28504 usgr1eop 28507 usgrexmpllem 28517 uhgrspan1lem2 28558 upgrres1lem2 28568 opfusgr 28580 fusgrfisbase 28585 fusgrfisstep 28586 usgrexi 28698 cusgrexi 28700 p1evtxdeqlem 28769 p1evtxdeq 28770 p1evtxdp1 28771 uspgrloopvtx 28772 umgr2v2evtx 28778 wlk2v2e 29410 eupthvdres 29488 eupth2lemb 29490 konigsbergvtx 29499 konigsberg 29510 strisomgrop 46508 ushrisomgr 46509 uspgrsprfo 46526 |
Copyright terms: Public domain | W3C validator |