| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opvtxfv | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| opvtxfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvvg 5679 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
| 2 | opvtxval 28930 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) |
| 4 | op1stg 7980 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (1st ‘〈𝑉, 𝐸〉) = 𝑉) | |
| 5 | 3, 4 | eqtrd 2764 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 × cxp 5636 ‘cfv 6511 1st c1st 7966 Vtxcvtx 28923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-vtx 28925 |
| This theorem is referenced by: opvtxov 28932 opvtxfvi 28936 gropd 28958 isuhgrop 28997 uhgrunop 29002 upgrop 29021 upgr1eop 29042 upgrunop 29046 umgrunop 29048 isuspgrop 29088 isusgrop 29089 ausgrusgrb 29092 uspgr1eop 29174 usgr1eop 29177 usgrexmpllem 29187 uhgrspan1lem2 29228 upgrres1lem2 29238 opfusgr 29250 fusgrfisbase 29255 fusgrfisstep 29256 usgrexi 29368 cusgrexi 29370 p1evtxdeqlem 29440 p1evtxdeq 29441 p1evtxdp1 29442 uspgrloopvtx 29443 umgr2v2evtx 29449 wlk2v2e 30086 eupthvdres 30164 eupth2lemb 30166 konigsbergvtx 30175 konigsberg 30186 isubgrvtx 47867 opstrgric 47926 ushggricedg 47927 usgrexmpl1vtx 48014 usgrexmpl2vtx 48019 uspgrsprfo 48136 |
| Copyright terms: Public domain | W3C validator |