Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opvtxfv | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opvtxfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5591 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
2 | opvtxval 27094 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) |
4 | op1stg 7773 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (1st ‘〈𝑉, 𝐸〉) = 𝑉) | |
5 | 3, 4 | eqtrd 2777 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 〈cop 4547 × cxp 5549 ‘cfv 6380 1st c1st 7759 Vtxcvtx 27087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fv 6388 df-1st 7761 df-vtx 27089 |
This theorem is referenced by: opvtxov 27096 opvtxfvi 27100 gropd 27122 isuhgrop 27161 uhgrunop 27166 upgrop 27185 upgr1eop 27206 upgrunop 27210 umgrunop 27212 isuspgrop 27252 isusgrop 27253 ausgrusgrb 27256 uspgr1eop 27335 usgr1eop 27338 usgrexmpllem 27348 uhgrspan1lem2 27389 upgrres1lem2 27399 opfusgr 27411 fusgrfisbase 27416 fusgrfisstep 27417 usgrexi 27529 cusgrexi 27531 p1evtxdeqlem 27600 p1evtxdeq 27601 p1evtxdp1 27602 uspgrloopvtx 27603 umgr2v2evtx 27609 wlk2v2e 28240 eupthvdres 28318 eupth2lemb 28320 konigsbergvtx 28329 konigsberg 28340 strisomgrop 44965 ushrisomgr 44966 uspgrsprfo 44983 |
Copyright terms: Public domain | W3C validator |