| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opvtxfv | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| opvtxfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvvg 5660 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
| 2 | opvtxval 28952 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) |
| 4 | op1stg 7936 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (1st ‘〈𝑉, 𝐸〉) = 𝑉) | |
| 5 | 3, 4 | eqtrd 2764 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 × cxp 5617 ‘cfv 6482 1st c1st 7922 Vtxcvtx 28945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-1st 7924 df-vtx 28947 |
| This theorem is referenced by: opvtxov 28954 opvtxfvi 28958 gropd 28980 isuhgrop 29019 uhgrunop 29024 upgrop 29043 upgr1eop 29064 upgrunop 29068 umgrunop 29070 isuspgrop 29110 isusgrop 29111 ausgrusgrb 29114 uspgr1eop 29196 usgr1eop 29199 usgrexmpllem 29209 uhgrspan1lem2 29250 upgrres1lem2 29260 opfusgr 29272 fusgrfisbase 29277 fusgrfisstep 29278 usgrexi 29390 cusgrexi 29392 p1evtxdeqlem 29462 p1evtxdeq 29463 p1evtxdp1 29464 uspgrloopvtx 29465 umgr2v2evtx 29471 wlk2v2e 30105 eupthvdres 30183 eupth2lemb 30185 konigsbergvtx 30194 konigsberg 30205 isubgrvtx 47871 opstrgric 47930 ushggricedg 47931 usgrexmpl1vtx 48027 usgrexmpl2vtx 48032 uspgrsprfo 48152 |
| Copyright terms: Public domain | W3C validator |