MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfv Structured version   Visualization version   GIF version

Theorem opvtxfv 28985
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxfv ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)

Proof of Theorem opvtxfv
StepHypRef Expression
1 opelvvg 5672 . . 3 ((𝑉𝑋𝐸𝑌) → ⟨𝑉, 𝐸⟩ ∈ (V × V))
2 opvtxval 28984 . . 3 (⟨𝑉, 𝐸⟩ ∈ (V × V) → (Vtx‘⟨𝑉, 𝐸⟩) = (1st ‘⟨𝑉, 𝐸⟩))
31, 2syl 17 . 2 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = (1st ‘⟨𝑉, 𝐸⟩))
4 op1stg 7959 . 2 ((𝑉𝑋𝐸𝑌) → (1st ‘⟨𝑉, 𝐸⟩) = 𝑉)
53, 4eqtrd 2764 1 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591   × cxp 5629  cfv 6499  1st c1st 7945  Vtxcvtx 28977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-vtx 28979
This theorem is referenced by:  opvtxov  28986  opvtxfvi  28990  gropd  29012  isuhgrop  29051  uhgrunop  29056  upgrop  29075  upgr1eop  29096  upgrunop  29100  umgrunop  29102  isuspgrop  29142  isusgrop  29143  ausgrusgrb  29146  uspgr1eop  29228  usgr1eop  29231  usgrexmpllem  29241  uhgrspan1lem2  29282  upgrres1lem2  29292  opfusgr  29304  fusgrfisbase  29309  fusgrfisstep  29310  usgrexi  29422  cusgrexi  29424  p1evtxdeqlem  29494  p1evtxdeq  29495  p1evtxdp1  29496  uspgrloopvtx  29497  umgr2v2evtx  29503  wlk2v2e  30137  eupthvdres  30215  eupth2lemb  30217  konigsbergvtx  30226  konigsberg  30237  isubgrvtx  47861  opstrgric  47920  ushggricedg  47921  usgrexmpl1vtx  48008  usgrexmpl2vtx  48013  uspgrsprfo  48130
  Copyright terms: Public domain W3C validator