![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opvtxfv | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opvtxfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5730 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
2 | opvtxval 29035 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) |
4 | op1stg 8025 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (1st ‘〈𝑉, 𝐸〉) = 𝑉) | |
5 | 3, 4 | eqtrd 2775 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 × cxp 5687 ‘cfv 6563 1st c1st 8011 Vtxcvtx 29028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 df-vtx 29030 |
This theorem is referenced by: opvtxov 29037 opvtxfvi 29041 gropd 29063 isuhgrop 29102 uhgrunop 29107 upgrop 29126 upgr1eop 29147 upgrunop 29151 umgrunop 29153 isuspgrop 29193 isusgrop 29194 ausgrusgrb 29197 uspgr1eop 29279 usgr1eop 29282 usgrexmpllem 29292 uhgrspan1lem2 29333 upgrres1lem2 29343 opfusgr 29355 fusgrfisbase 29360 fusgrfisstep 29361 usgrexi 29473 cusgrexi 29475 p1evtxdeqlem 29545 p1evtxdeq 29546 p1evtxdp1 29547 uspgrloopvtx 29548 umgr2v2evtx 29554 wlk2v2e 30186 eupthvdres 30264 eupth2lemb 30266 konigsbergvtx 30275 konigsberg 30286 isubgrvtx 47791 opstrgric 47833 ushggricedg 47834 usgrexmpl1vtx 47918 usgrexmpl2vtx 47923 uspgrsprfo 47992 |
Copyright terms: Public domain | W3C validator |