MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfv Structured version   Visualization version   GIF version

Theorem opvtxfv 28264
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxfv ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉)

Proof of Theorem opvtxfv
StepHypRef Expression
1 opelvvg 5718 . . 3 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → ⟚𝑉, 𝐞⟩ ∈ (V × V))
2 opvtxval 28263 . . 3 (⟚𝑉, 𝐞⟩ ∈ (V × V) → (Vtx‘⟚𝑉, 𝐞⟩) = (1st ‘⟚𝑉, 𝐞⟩))
31, 2syl 17 . 2 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (Vtx‘⟚𝑉, 𝐞⟩) = (1st ‘⟚𝑉, 𝐞⟩))
4 op1stg 7987 . 2 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (1st ‘⟚𝑉, 𝐞⟩) = 𝑉)
53, 4eqtrd 2773 1 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475  âŸšcop 4635   × cxp 5675  â€˜cfv 6544  1st c1st 7973  Vtxcvtx 28256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-1st 7975  df-vtx 28258
This theorem is referenced by:  opvtxov  28265  opvtxfvi  28269  gropd  28291  isuhgrop  28330  uhgrunop  28335  upgrop  28354  upgr1eop  28375  upgrunop  28379  umgrunop  28381  isuspgrop  28421  isusgrop  28422  ausgrusgrb  28425  uspgr1eop  28504  usgr1eop  28507  usgrexmpllem  28517  uhgrspan1lem2  28558  upgrres1lem2  28568  opfusgr  28580  fusgrfisbase  28585  fusgrfisstep  28586  usgrexi  28698  cusgrexi  28700  p1evtxdeqlem  28769  p1evtxdeq  28770  p1evtxdp1  28771  uspgrloopvtx  28772  umgr2v2evtx  28778  wlk2v2e  29410  eupthvdres  29488  eupth2lemb  29490  konigsbergvtx  29499  konigsberg  29510  strisomgrop  46508  ushrisomgr  46509  uspgrsprfo  46526
  Copyright terms: Public domain W3C validator