MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfv Structured version   Visualization version   GIF version

Theorem opvtxfv 28253
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxfv ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉)

Proof of Theorem opvtxfv
StepHypRef Expression
1 opelvvg 5715 . . 3 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → ⟚𝑉, 𝐞⟩ ∈ (V × V))
2 opvtxval 28252 . . 3 (⟚𝑉, 𝐞⟩ ∈ (V × V) → (Vtx‘⟚𝑉, 𝐞⟩) = (1st ‘⟚𝑉, 𝐞⟩))
31, 2syl 17 . 2 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (Vtx‘⟚𝑉, 𝐞⟩) = (1st ‘⟚𝑉, 𝐞⟩))
4 op1stg 7983 . 2 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (1st ‘⟚𝑉, 𝐞⟩) = 𝑉)
53, 4eqtrd 2772 1 ((𝑉 ∈ 𝑋 ∧ 𝐞 ∈ 𝑌) → (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  âŸšcop 4633   × cxp 5673  â€˜cfv 6540  1st c1st 7969  Vtxcvtx 28245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fv 6548  df-1st 7971  df-vtx 28247
This theorem is referenced by:  opvtxov  28254  opvtxfvi  28258  gropd  28280  isuhgrop  28319  uhgrunop  28324  upgrop  28343  upgr1eop  28364  upgrunop  28368  umgrunop  28370  isuspgrop  28410  isusgrop  28411  ausgrusgrb  28414  uspgr1eop  28493  usgr1eop  28496  usgrexmpllem  28506  uhgrspan1lem2  28547  upgrres1lem2  28557  opfusgr  28569  fusgrfisbase  28574  fusgrfisstep  28575  usgrexi  28687  cusgrexi  28689  p1evtxdeqlem  28758  p1evtxdeq  28759  p1evtxdp1  28760  uspgrloopvtx  28761  umgr2v2evtx  28767  wlk2v2e  29399  eupthvdres  29477  eupth2lemb  29479  konigsbergvtx  29488  konigsberg  29499  strisomgrop  46494  ushrisomgr  46495  uspgrsprfo  46512
  Copyright terms: Public domain W3C validator