MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfv Structured version   Visualization version   GIF version

Theorem opvtxfv 29039
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxfv ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)

Proof of Theorem opvtxfv
StepHypRef Expression
1 opelvvg 5741 . . 3 ((𝑉𝑋𝐸𝑌) → ⟨𝑉, 𝐸⟩ ∈ (V × V))
2 opvtxval 29038 . . 3 (⟨𝑉, 𝐸⟩ ∈ (V × V) → (Vtx‘⟨𝑉, 𝐸⟩) = (1st ‘⟨𝑉, 𝐸⟩))
31, 2syl 17 . 2 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = (1st ‘⟨𝑉, 𝐸⟩))
4 op1stg 8042 . 2 ((𝑉𝑋𝐸𝑌) → (1st ‘⟨𝑉, 𝐸⟩) = 𝑉)
53, 4eqtrd 2780 1 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654   × cxp 5698  cfv 6573  1st c1st 8028  Vtxcvtx 29031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-vtx 29033
This theorem is referenced by:  opvtxov  29040  opvtxfvi  29044  gropd  29066  isuhgrop  29105  uhgrunop  29110  upgrop  29129  upgr1eop  29150  upgrunop  29154  umgrunop  29156  isuspgrop  29196  isusgrop  29197  ausgrusgrb  29200  uspgr1eop  29282  usgr1eop  29285  usgrexmpllem  29295  uhgrspan1lem2  29336  upgrres1lem2  29346  opfusgr  29358  fusgrfisbase  29363  fusgrfisstep  29364  usgrexi  29476  cusgrexi  29478  p1evtxdeqlem  29548  p1evtxdeq  29549  p1evtxdp1  29550  uspgrloopvtx  29551  umgr2v2evtx  29557  wlk2v2e  30189  eupthvdres  30267  eupth2lemb  30269  konigsbergvtx  30278  konigsberg  30289  isubgrvtx  47737  opstrgric  47779  ushggricedg  47780  usgrexmpl1vtx  47838  usgrexmpl2vtx  47843  uspgrsprfo  47871
  Copyright terms: Public domain W3C validator