MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfv Structured version   Visualization version   GIF version

Theorem opvtxfv 27374
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxfv ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)

Proof of Theorem opvtxfv
StepHypRef Expression
1 opelvvg 5629 . . 3 ((𝑉𝑋𝐸𝑌) → ⟨𝑉, 𝐸⟩ ∈ (V × V))
2 opvtxval 27373 . . 3 (⟨𝑉, 𝐸⟩ ∈ (V × V) → (Vtx‘⟨𝑉, 𝐸⟩) = (1st ‘⟨𝑉, 𝐸⟩))
31, 2syl 17 . 2 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = (1st ‘⟨𝑉, 𝐸⟩))
4 op1stg 7843 . 2 ((𝑉𝑋𝐸𝑌) → (1st ‘⟨𝑉, 𝐸⟩) = 𝑉)
53, 4eqtrd 2778 1 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587  cfv 6433  1st c1st 7829  Vtxcvtx 27366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-vtx 27368
This theorem is referenced by:  opvtxov  27375  opvtxfvi  27379  gropd  27401  isuhgrop  27440  uhgrunop  27445  upgrop  27464  upgr1eop  27485  upgrunop  27489  umgrunop  27491  isuspgrop  27531  isusgrop  27532  ausgrusgrb  27535  uspgr1eop  27614  usgr1eop  27617  usgrexmpllem  27627  uhgrspan1lem2  27668  upgrres1lem2  27678  opfusgr  27690  fusgrfisbase  27695  fusgrfisstep  27696  usgrexi  27808  cusgrexi  27810  p1evtxdeqlem  27879  p1evtxdeq  27880  p1evtxdp1  27881  uspgrloopvtx  27882  umgr2v2evtx  27888  wlk2v2e  28521  eupthvdres  28599  eupth2lemb  28601  konigsbergvtx  28610  konigsberg  28621  strisomgrop  45292  ushrisomgr  45293  uspgrsprfo  45310
  Copyright terms: Public domain W3C validator