Step | Hyp | Ref
| Expression |
1 | | funiun 7141 |
. 2
⊢ (Fun
𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩}) |
2 | | eqeq1 2736 |
. . . . . . 7
⊢ (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} ↔ ⟨𝑋, 𝑌⟩ = ∪
𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩})) |
3 | | eqcom 2739 |
. . . . . . 7
⊢
(⟨𝑋, 𝑌⟩ = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} ↔ ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = ⟨𝑋, 𝑌⟩) |
4 | 2, 3 | bitrdi 286 |
. . . . . 6
⊢ (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} ↔ ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = ⟨𝑋, 𝑌⟩)) |
5 | 4 | adantl 482 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} ↔ ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = ⟨𝑋, 𝑌⟩)) |
6 | | funopsn.x |
. . . . . . . 8
⊢ 𝑋 ∈ V |
7 | | funopsn.y |
. . . . . . . 8
⊢ 𝑌 ∈ V |
8 | 6, 7 | opnzi 5473 |
. . . . . . 7
⊢
⟨𝑋, 𝑌⟩ ≠
∅ |
9 | | neeq1 3003 |
. . . . . . . . . . 11
⊢
(⟨𝑋, 𝑌⟩ = 𝐹 → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅)) |
10 | 9 | eqcoms 2740 |
. . . . . . . . . 10
⊢ (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅)) |
11 | | funrel 6562 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 → Rel 𝐹) |
12 | | reldm0 5925 |
. . . . . . . . . . . . . 14
⊢ (Rel
𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) |
14 | 13 | biimprd 247 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → (dom 𝐹 = ∅ → 𝐹 = ∅)) |
15 | 14 | necon3d 2961 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝐹 ≠ ∅ → dom 𝐹 ≠ ∅)) |
16 | 15 | com12 32 |
. . . . . . . . . 10
⊢ (𝐹 ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅)) |
17 | 10, 16 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅))) |
18 | 17 | com3l 89 |
. . . . . . . 8
⊢
(⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun
𝐹 → (𝐹 = ⟨𝑋, 𝑌⟩ → dom 𝐹 ≠ ∅))) |
19 | 18 | impd 411 |
. . . . . . 7
⊢
(⟨𝑋, 𝑌⟩ ≠ ∅ → ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅)) |
20 | 8, 19 | ax-mp 5 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅) |
21 | | fvex 6901 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
22 | 21, 6, 7 | iunopeqop 5520 |
. . . . . 6
⊢ (dom
𝐹 ≠ ∅ →
(∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎})) |
23 | 20, 22 | syl 17 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → (∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎})) |
24 | 5, 23 | sylbid 239 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} → ∃𝑎dom 𝐹 = {𝑎})) |
25 | 24 | imp 407 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩}) → ∃𝑎dom 𝐹 = {𝑎}) |
26 | | iuneq1 5012 |
. . . . . . . . 9
⊢ (dom
𝐹 = {𝑎} → ∪
𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = ∪ 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹‘𝑥)⟩}) |
27 | | vex 3478 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
28 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) |
29 | | fveq2 6888 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) |
30 | 28, 29 | opeq12d 4880 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → ⟨𝑥, (𝐹‘𝑥)⟩ = ⟨𝑎, (𝐹‘𝑎)⟩) |
31 | 30 | sneqd 4639 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → {⟨𝑥, (𝐹‘𝑥)⟩} = {⟨𝑎, (𝐹‘𝑎)⟩}) |
32 | 27, 31 | iunxsn 5093 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹‘𝑥)⟩} = {⟨𝑎, (𝐹‘𝑎)⟩} |
33 | 26, 32 | eqtrdi 2788 |
. . . . . . . 8
⊢ (dom
𝐹 = {𝑎} → ∪
𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = {⟨𝑎, (𝐹‘𝑎)⟩}) |
34 | 33 | adantl 482 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → ∪
𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} = {⟨𝑎, (𝐹‘𝑎)⟩}) |
35 | 34 | eqeq2d 2743 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} ↔ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩})) |
36 | | eqeq1 2736 |
. . . . . . . . . . 11
⊢ (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹‘𝑎)⟩})) |
37 | 36 | adantl 482 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹‘𝑎)⟩})) |
38 | | eqcom 2739 |
. . . . . . . . . . 11
⊢
(⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹‘𝑎)⟩} ↔ {⟨𝑎, (𝐹‘𝑎)⟩} = ⟨𝑋, 𝑌⟩) |
39 | | fvex 6901 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑎) ∈ V |
40 | 27, 39 | snopeqop 5505 |
. . . . . . . . . . 11
⊢
({⟨𝑎, (𝐹‘𝑎)⟩} = ⟨𝑋, 𝑌⟩ ↔ (𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎})) |
41 | 38, 40 | sylbb 218 |
. . . . . . . . . 10
⊢
(⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹‘𝑎)⟩} → (𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎})) |
42 | 37, 41 | syl6bi 252 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} → (𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}))) |
43 | 42 | imp 407 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩}) → (𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎})) |
44 | | simpr3 1196 |
. . . . . . . . . . . 12
⊢ ((𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} ∧ (𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎})) → 𝑋 = {𝑎}) |
45 | | simp1 1136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → 𝑎 = (𝐹‘𝑎)) |
46 | 45 | eqcomd 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → (𝐹‘𝑎) = 𝑎) |
47 | 46 | opeq2d 4879 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → ⟨𝑎, (𝐹‘𝑎)⟩ = ⟨𝑎, 𝑎⟩) |
48 | 47 | sneqd 4639 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → {⟨𝑎, (𝐹‘𝑎)⟩} = {⟨𝑎, 𝑎⟩}) |
49 | 48 | eqeq2d 2743 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} ↔ 𝐹 = {⟨𝑎, 𝑎⟩})) |
50 | 49 | biimpac 479 |
. . . . . . . . . . . 12
⊢ ((𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} ∧ (𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎})) → 𝐹 = {⟨𝑎, 𝑎⟩}) |
51 | 44, 50 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} ∧ (𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎})) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})) |
52 | 51 | ex 413 |
. . . . . . . . . 10
⊢ (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} → ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))) |
53 | 52 | adantl 482 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩}) → ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))) |
54 | 53 | a1dd 50 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩}) → ((𝑎 = (𝐹‘𝑎) ∧ 𝑋 = 𝑌 ∧ 𝑋 = {𝑎}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))) |
55 | 43, 54 | mpd 15 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))) |
56 | 55 | impancom 452 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))) |
57 | 35, 56 | sylbid 239 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))) |
58 | 57 | impancom 452 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))) |
59 | 58 | eximdv 1920 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩}) → (∃𝑎dom 𝐹 = {𝑎} → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))) |
60 | 25, 59 | mpd 15 |
. 2
⊢ (((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = ∪ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹‘𝑥)⟩}) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})) |
61 | 1, 60 | mpidan 687 |
1
⊢ ((Fun
𝐹 ∧ 𝐹 = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})) |