MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopsn Structured version   Visualization version   GIF version

Theorem funopsn 6904
Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Proof shortened by AV, 15-Jul-2021.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funopsn.x 𝑋 ∈ V
funopsn.y 𝑌 ∈ V
Assertion
Ref Expression
funopsn ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
Distinct variable groups:   𝐹,𝑎   𝑋,𝑎   𝑌,𝑎

Proof of Theorem funopsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funiun 6903 . 2 (Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
2 eqeq1 2825 . . . . . . 7 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ ⟨𝑋, 𝑌⟩ = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}))
3 eqcom 2828 . . . . . . 7 (⟨𝑋, 𝑌⟩ = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩)
42, 3syl6bb 289 . . . . . 6 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩))
54adantl 484 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩))
6 funopsn.x . . . . . . . 8 𝑋 ∈ V
7 funopsn.y . . . . . . . 8 𝑌 ∈ V
86, 7opnzi 5358 . . . . . . 7 𝑋, 𝑌⟩ ≠ ∅
9 neeq1 3078 . . . . . . . . . . 11 (⟨𝑋, 𝑌⟩ = 𝐹 → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅))
109eqcoms 2829 . . . . . . . . . 10 (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅))
11 funrel 6366 . . . . . . . . . . . . . 14 (Fun 𝐹 → Rel 𝐹)
12 reldm0 5792 . . . . . . . . . . . . . 14 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
1311, 12syl 17 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
1413biimprd 250 . . . . . . . . . . . 12 (Fun 𝐹 → (dom 𝐹 = ∅ → 𝐹 = ∅))
1514necon3d 3037 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 ≠ ∅ → dom 𝐹 ≠ ∅))
1615com12 32 . . . . . . . . . 10 (𝐹 ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅))
1710, 16syl6bi 255 . . . . . . . . 9 (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅)))
1817com3l 89 . . . . . . . 8 (⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun 𝐹 → (𝐹 = ⟨𝑋, 𝑌⟩ → dom 𝐹 ≠ ∅)))
1918impd 413 . . . . . . 7 (⟨𝑋, 𝑌⟩ ≠ ∅ → ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅))
208, 19ax-mp 5 . . . . . 6 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅)
21 fvex 6677 . . . . . . 7 (𝐹𝑥) ∈ V
2221, 6, 7iunopeqop 5403 . . . . . 6 (dom 𝐹 ≠ ∅ → ( 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎}))
2320, 22syl 17 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ( 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎}))
245, 23sylbid 242 . . . 4 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} → ∃𝑎dom 𝐹 = {𝑎}))
2524imp 409 . . 3 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → ∃𝑎dom 𝐹 = {𝑎})
26 iuneq1 4927 . . . . . . . . 9 (dom 𝐹 = {𝑎} → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹𝑥)⟩})
27 vex 3497 . . . . . . . . . 10 𝑎 ∈ V
28 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
29 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3028, 29opeq12d 4804 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝑎, (𝐹𝑎)⟩)
3130sneqd 4572 . . . . . . . . . 10 (𝑥 = 𝑎 → {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3227, 31iunxsn 5005 . . . . . . . . 9 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩}
3326, 32syl6eq 2872 . . . . . . . 8 (dom 𝐹 = {𝑎} → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3433adantl 484 . . . . . . 7 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3534eqeq2d 2832 . . . . . 6 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}))
36 eqeq1 2825 . . . . . . . . . . 11 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩}))
3736adantl 484 . . . . . . . . . 10 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩}))
38 eqcom 2828 . . . . . . . . . . 11 (⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩} ↔ {⟨𝑎, (𝐹𝑎)⟩} = ⟨𝑋, 𝑌⟩)
39 fvex 6677 . . . . . . . . . . . 12 (𝐹𝑎) ∈ V
4027, 39snopeqop 5388 . . . . . . . . . . 11 ({⟨𝑎, (𝐹𝑎)⟩} = ⟨𝑋, 𝑌⟩ ↔ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
4138, 40sylbb 221 . . . . . . . . . 10 (⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩} → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
4237, 41syl6bi 255 . . . . . . . . 9 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})))
4342imp 409 . . . . . . . 8 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
44 simpr3 1192 . . . . . . . . . . . 12 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → 𝑋 = {𝑎})
45 simp1 1132 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → 𝑎 = (𝐹𝑎))
4645eqcomd 2827 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝐹𝑎) = 𝑎)
4746opeq2d 4803 . . . . . . . . . . . . . . 15 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝑎, 𝑎⟩)
4847sneqd 4572 . . . . . . . . . . . . . 14 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → {⟨𝑎, (𝐹𝑎)⟩} = {⟨𝑎, 𝑎⟩})
4948eqeq2d 2832 . . . . . . . . . . . . 13 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ 𝐹 = {⟨𝑎, 𝑎⟩}))
5049biimpac 481 . . . . . . . . . . . 12 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → 𝐹 = {⟨𝑎, 𝑎⟩})
5144, 50jca 514 . . . . . . . . . . 11 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
5251ex 415 . . . . . . . . . 10 (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5352adantl 484 . . . . . . . . 9 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5453a1dd 50 . . . . . . . 8 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))))
5543, 54mpd 15 . . . . . . 7 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5655impancom 454 . . . . . 6 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5735, 56sylbid 242 . . . . 5 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5857impancom 454 . . . 4 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5958eximdv 1914 . . 3 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → (∃𝑎dom 𝐹 = {𝑎} → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
6025, 59mpd 15 . 2 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
611, 60mpidan 687 1 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  Vcvv 3494  c0 4290  {csn 4560  cop 4566   ciun 4911  dom cdm 5549  Rel wrel 5554  Fun wfun 6343  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357
This theorem is referenced by:  funop  6905  funop1  43476
  Copyright terms: Public domain W3C validator