MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopsn Structured version   Visualization version   GIF version

Theorem funopsn 7142
Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Proof shortened by AV, 15-Jul-2021.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6596, as relsnopg 5801 is to relop 5848. (New usage is discouraged.)
Hypotheses
Ref Expression
funopsn.x 𝑋 ∈ V
funopsn.y 𝑌 ∈ V
Assertion
Ref Expression
funopsn ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
Distinct variable groups:   𝐹,𝑎   𝑋,𝑎   𝑌,𝑎

Proof of Theorem funopsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funiun 7141 . 2 (Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
2 eqeq1 2736 . . . . . . 7 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ ⟨𝑋, 𝑌⟩ = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}))
3 eqcom 2739 . . . . . . 7 (⟨𝑋, 𝑌⟩ = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩)
42, 3bitrdi 286 . . . . . 6 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩))
54adantl 482 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩))
6 funopsn.x . . . . . . . 8 𝑋 ∈ V
7 funopsn.y . . . . . . . 8 𝑌 ∈ V
86, 7opnzi 5473 . . . . . . 7 𝑋, 𝑌⟩ ≠ ∅
9 neeq1 3003 . . . . . . . . . . 11 (⟨𝑋, 𝑌⟩ = 𝐹 → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅))
109eqcoms 2740 . . . . . . . . . 10 (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅))
11 funrel 6562 . . . . . . . . . . . . . 14 (Fun 𝐹 → Rel 𝐹)
12 reldm0 5925 . . . . . . . . . . . . . 14 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
1311, 12syl 17 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
1413biimprd 247 . . . . . . . . . . . 12 (Fun 𝐹 → (dom 𝐹 = ∅ → 𝐹 = ∅))
1514necon3d 2961 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 ≠ ∅ → dom 𝐹 ≠ ∅))
1615com12 32 . . . . . . . . . 10 (𝐹 ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅))
1710, 16syl6bi 252 . . . . . . . . 9 (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅)))
1817com3l 89 . . . . . . . 8 (⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun 𝐹 → (𝐹 = ⟨𝑋, 𝑌⟩ → dom 𝐹 ≠ ∅)))
1918impd 411 . . . . . . 7 (⟨𝑋, 𝑌⟩ ≠ ∅ → ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅))
208, 19ax-mp 5 . . . . . 6 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅)
21 fvex 6901 . . . . . . 7 (𝐹𝑥) ∈ V
2221, 6, 7iunopeqop 5520 . . . . . 6 (dom 𝐹 ≠ ∅ → ( 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎}))
2320, 22syl 17 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ( 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎}))
245, 23sylbid 239 . . . 4 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} → ∃𝑎dom 𝐹 = {𝑎}))
2524imp 407 . . 3 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → ∃𝑎dom 𝐹 = {𝑎})
26 iuneq1 5012 . . . . . . . . 9 (dom 𝐹 = {𝑎} → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹𝑥)⟩})
27 vex 3478 . . . . . . . . . 10 𝑎 ∈ V
28 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
29 fveq2 6888 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3028, 29opeq12d 4880 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝑎, (𝐹𝑎)⟩)
3130sneqd 4639 . . . . . . . . . 10 (𝑥 = 𝑎 → {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3227, 31iunxsn 5093 . . . . . . . . 9 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩}
3326, 32eqtrdi 2788 . . . . . . . 8 (dom 𝐹 = {𝑎} → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3433adantl 482 . . . . . . 7 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3534eqeq2d 2743 . . . . . 6 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}))
36 eqeq1 2736 . . . . . . . . . . 11 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩}))
3736adantl 482 . . . . . . . . . 10 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩}))
38 eqcom 2739 . . . . . . . . . . 11 (⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩} ↔ {⟨𝑎, (𝐹𝑎)⟩} = ⟨𝑋, 𝑌⟩)
39 fvex 6901 . . . . . . . . . . . 12 (𝐹𝑎) ∈ V
4027, 39snopeqop 5505 . . . . . . . . . . 11 ({⟨𝑎, (𝐹𝑎)⟩} = ⟨𝑋, 𝑌⟩ ↔ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
4138, 40sylbb 218 . . . . . . . . . 10 (⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩} → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
4237, 41syl6bi 252 . . . . . . . . 9 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})))
4342imp 407 . . . . . . . 8 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
44 simpr3 1196 . . . . . . . . . . . 12 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → 𝑋 = {𝑎})
45 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → 𝑎 = (𝐹𝑎))
4645eqcomd 2738 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝐹𝑎) = 𝑎)
4746opeq2d 4879 . . . . . . . . . . . . . . 15 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝑎, 𝑎⟩)
4847sneqd 4639 . . . . . . . . . . . . . 14 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → {⟨𝑎, (𝐹𝑎)⟩} = {⟨𝑎, 𝑎⟩})
4948eqeq2d 2743 . . . . . . . . . . . . 13 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ 𝐹 = {⟨𝑎, 𝑎⟩}))
5049biimpac 479 . . . . . . . . . . . 12 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → 𝐹 = {⟨𝑎, 𝑎⟩})
5144, 50jca 512 . . . . . . . . . . 11 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
5251ex 413 . . . . . . . . . 10 (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5352adantl 482 . . . . . . . . 9 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5453a1dd 50 . . . . . . . 8 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))))
5543, 54mpd 15 . . . . . . 7 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5655impancom 452 . . . . . 6 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5735, 56sylbid 239 . . . . 5 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5857impancom 452 . . . 4 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5958eximdv 1920 . . 3 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → (∃𝑎dom 𝐹 = {𝑎} → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
6025, 59mpd 15 . 2 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
611, 60mpidan 687 1 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  c0 4321  {csn 4627  cop 4633   ciun 4996  dom cdm 5675  Rel wrel 5680  Fun wfun 6534  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548
This theorem is referenced by:  funop  7143  funop1  45977
  Copyright terms: Public domain W3C validator