MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopsn Structured version   Visualization version   GIF version

Theorem funopsn 7085
Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Proof shortened by AV, 15-Jul-2021.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6544, as relsnopg 5752 is to relop 5799. (New usage is discouraged.)
Hypotheses
Ref Expression
funopsn.x 𝑋 ∈ V
funopsn.y 𝑌 ∈ V
Assertion
Ref Expression
funopsn ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
Distinct variable groups:   𝐹,𝑎   𝑋,𝑎   𝑌,𝑎

Proof of Theorem funopsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funiun 7084 . 2 (Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
2 eqeq1 2741 . . . . . . 7 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ ⟨𝑋, 𝑌⟩ = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}))
3 eqcom 2744 . . . . . . 7 (⟨𝑋, 𝑌⟩ = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩)
42, 3bitrdi 287 . . . . . 6 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩))
54adantl 483 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩))
6 funopsn.x . . . . . . . 8 𝑋 ∈ V
7 funopsn.y . . . . . . . 8 𝑌 ∈ V
86, 7opnzi 5426 . . . . . . 7 𝑋, 𝑌⟩ ≠ ∅
9 neeq1 3004 . . . . . . . . . . 11 (⟨𝑋, 𝑌⟩ = 𝐹 → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅))
109eqcoms 2745 . . . . . . . . . 10 (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ ↔ 𝐹 ≠ ∅))
11 funrel 6510 . . . . . . . . . . . . . 14 (Fun 𝐹 → Rel 𝐹)
12 reldm0 5876 . . . . . . . . . . . . . 14 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
1311, 12syl 17 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
1413biimprd 248 . . . . . . . . . . . 12 (Fun 𝐹 → (dom 𝐹 = ∅ → 𝐹 = ∅))
1514necon3d 2962 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 ≠ ∅ → dom 𝐹 ≠ ∅))
1615com12 32 . . . . . . . . . 10 (𝐹 ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅))
1710, 16syl6bi 253 . . . . . . . . 9 (𝐹 = ⟨𝑋, 𝑌⟩ → (⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun 𝐹 → dom 𝐹 ≠ ∅)))
1817com3l 89 . . . . . . . 8 (⟨𝑋, 𝑌⟩ ≠ ∅ → (Fun 𝐹 → (𝐹 = ⟨𝑋, 𝑌⟩ → dom 𝐹 ≠ ∅)))
1918impd 412 . . . . . . 7 (⟨𝑋, 𝑌⟩ ≠ ∅ → ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅))
208, 19ax-mp 5 . . . . . 6 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → dom 𝐹 ≠ ∅)
21 fvex 6847 . . . . . . 7 (𝐹𝑥) ∈ V
2221, 6, 7iunopeqop 5472 . . . . . 6 (dom 𝐹 ≠ ∅ → ( 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎}))
2320, 22syl 17 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ( 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = ⟨𝑋, 𝑌⟩ → ∃𝑎dom 𝐹 = {𝑎}))
245, 23sylbid 239 . . . 4 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} → ∃𝑎dom 𝐹 = {𝑎}))
2524imp 408 . . 3 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → ∃𝑎dom 𝐹 = {𝑎})
26 iuneq1 4965 . . . . . . . . 9 (dom 𝐹 = {𝑎} → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹𝑥)⟩})
27 vex 3447 . . . . . . . . . 10 𝑎 ∈ V
28 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
29 fveq2 6834 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3028, 29opeq12d 4833 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝑎, (𝐹𝑎)⟩)
3130sneqd 4593 . . . . . . . . . 10 (𝑥 = 𝑎 → {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3227, 31iunxsn 5046 . . . . . . . . 9 𝑥 ∈ {𝑎} {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩}
3326, 32eqtrdi 2793 . . . . . . . 8 (dom 𝐹 = {𝑎} → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3433adantl 483 . . . . . . 7 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} = {⟨𝑎, (𝐹𝑎)⟩})
3534eqeq2d 2748 . . . . . 6 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}))
36 eqeq1 2741 . . . . . . . . . . 11 (𝐹 = ⟨𝑋, 𝑌⟩ → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩}))
3736adantl 483 . . . . . . . . . 10 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ ⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩}))
38 eqcom 2744 . . . . . . . . . . 11 (⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩} ↔ {⟨𝑎, (𝐹𝑎)⟩} = ⟨𝑋, 𝑌⟩)
39 fvex 6847 . . . . . . . . . . . 12 (𝐹𝑎) ∈ V
4027, 39snopeqop 5457 . . . . . . . . . . 11 ({⟨𝑎, (𝐹𝑎)⟩} = ⟨𝑋, 𝑌⟩ ↔ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
4138, 40sylbb 218 . . . . . . . . . 10 (⟨𝑋, 𝑌⟩ = {⟨𝑎, (𝐹𝑎)⟩} → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
4237, 41syl6bi 253 . . . . . . . . 9 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})))
4342imp 408 . . . . . . . 8 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}))
44 simpr3 1196 . . . . . . . . . . . 12 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → 𝑋 = {𝑎})
45 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → 𝑎 = (𝐹𝑎))
4645eqcomd 2743 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝐹𝑎) = 𝑎)
4746opeq2d 4832 . . . . . . . . . . . . . . 15 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝑎, 𝑎⟩)
4847sneqd 4593 . . . . . . . . . . . . . 14 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → {⟨𝑎, (𝐹𝑎)⟩} = {⟨𝑎, 𝑎⟩})
4948eqeq2d 2748 . . . . . . . . . . . . 13 ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ 𝐹 = {⟨𝑎, 𝑎⟩}))
5049biimpac 480 . . . . . . . . . . . 12 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → 𝐹 = {⟨𝑎, 𝑎⟩})
5144, 50jca 513 . . . . . . . . . . 11 ((𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ∧ (𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎})) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
5251ex 414 . . . . . . . . . 10 (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5352adantl 483 . . . . . . . . 9 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5453a1dd 50 . . . . . . . 8 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → ((𝑎 = (𝐹𝑎) ∧ 𝑋 = 𝑌𝑋 = {𝑎}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))))
5543, 54mpd 15 . . . . . . 7 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5655impancom 453 . . . . . 6 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5735, 56sylbid 239 . . . . 5 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ dom 𝐹 = {𝑎}) → (𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5857impancom 453 . . . 4 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → (dom 𝐹 = {𝑎} → (𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
5958eximdv 1920 . . 3 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → (∃𝑎dom 𝐹 = {𝑎} → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩})))
6025, 59mpd 15 . 2 (((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) ∧ 𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
611, 60mpidan 687 1 ((Fun 𝐹𝐹 = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2941  Vcvv 3443  c0 4277  {csn 4581  cop 4587   ciun 4949  dom cdm 5627  Rel wrel 5632  Fun wfun 6482  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pr 5379
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496
This theorem is referenced by:  funop  7086  funop1  45193
  Copyright terms: Public domain W3C validator