MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsseleq Structured version   Visualization version   GIF version

Theorem ordsseleq 6393
Description: For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordsseleq ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem ordsseleq
StepHypRef Expression
1 sspss 4099 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
2 ordelpss 6392 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
32orbi1d 915 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ↔ (𝐴𝐵𝐴 = 𝐵)))
41, 3bitr4id 289 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wss 3948  wpss 3949  Ord word 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367
This theorem is referenced by:  ordtri3or  6396  ordtri1  6397  ordtri2  6399  onsseleq  6405  ordsssuc  6453  ordsson  7772  ordsucelsuc  7812  limom  7873  onfununi  8343  cfslbn  10264  noextenddif  27395  finxpsuclem  36581  ordsssucim  42455
  Copyright terms: Public domain W3C validator