MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsseleq Structured version   Visualization version   GIF version

Theorem ordsseleq 6413
Description: For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordsseleq ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem ordsseleq
StepHypRef Expression
1 sspss 4102 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
2 ordelpss 6412 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
32orbi1d 917 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ↔ (𝐴𝐵𝐴 = 𝐵)))
41, 3bitr4id 290 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wss 3951  wpss 3952  Ord word 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387
This theorem is referenced by:  ordtri3or  6416  ordtri1  6417  ordtri2  6419  onsseleq  6425  ordsssuc  6473  ordsson  7803  ordsucelsuc  7842  limom  7903  onfununi  8381  cfslbn  10307  noextenddif  27713  finxpsuclem  37398  ordsssucim  43415
  Copyright terms: Public domain W3C validator