MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsseleq Structured version   Visualization version   GIF version

Theorem ordsseleq 6231
Description: For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordsseleq ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem ordsseleq
StepHypRef Expression
1 sspss 4004 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
2 ordelpss 6230 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
32orbi1d 917 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ↔ (𝐴𝐵𝐴 = 𝐵)))
41, 3bitr4id 293 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wss 3857  wpss 3858  Ord word 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2713  df-cleq 2726  df-clel 2812  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-tr 5151  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-ord 6205
This theorem is referenced by:  ordtri3or  6234  ordtri1  6235  ordtri2  6237  onsseleq  6243  ordsssuc  6288  ordsson  7556  ordsucelsuc  7590  limom  7649  onfununi  8067  cfslbn  9864  noextenddif  33565  finxpsuclem  35262
  Copyright terms: Public domain W3C validator