MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Structured version   Visualization version   GIF version

Theorem ordelinel 6349
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordelinel ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 6348 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
213adant3 1130 . . 3 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
3 eleq1a 2834 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐴 = (𝐴𝐵) → 𝐴𝐶))
4 eleq1a 2834 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐵 = (𝐴𝐵) → 𝐵𝐶))
53, 4orim12d 961 . . 3 ((𝐴𝐵) ∈ 𝐶 → ((𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)) → (𝐴𝐶𝐵𝐶)))
62, 5syl5com 31 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 → (𝐴𝐶𝐵𝐶)))
7 ordin 6281 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
8 inss1 4159 . . . . 5 (𝐴𝐵) ⊆ 𝐴
9 ordtr2 6295 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐴𝐴𝐶) → (𝐴𝐵) ∈ 𝐶))
108, 9mpani 692 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐴𝐶 → (𝐴𝐵) ∈ 𝐶))
11 inss2 4160 . . . . 5 (𝐴𝐵) ⊆ 𝐵
12 ordtr2 6295 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐵𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
1311, 12mpani 692 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐵𝐶 → (𝐴𝐵) ∈ 𝐶))
1410, 13jaod 855 . . 3 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
157, 14stoic3 1780 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
166, 15impbid 211 1 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator