MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Structured version   Visualization version   GIF version

Theorem ordelinel 6496
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordelinel ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 6495 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
213adant3 1132 . . 3 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
3 eleq1a 2839 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐴 = (𝐴𝐵) → 𝐴𝐶))
4 eleq1a 2839 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐵 = (𝐴𝐵) → 𝐵𝐶))
53, 4orim12d 965 . . 3 ((𝐴𝐵) ∈ 𝐶 → ((𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)) → (𝐴𝐶𝐵𝐶)))
62, 5syl5com 31 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 → (𝐴𝐶𝐵𝐶)))
7 ordin 6425 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
8 inss1 4258 . . . . 5 (𝐴𝐵) ⊆ 𝐴
9 ordtr2 6439 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐴𝐴𝐶) → (𝐴𝐵) ∈ 𝐶))
108, 9mpani 695 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐴𝐶 → (𝐴𝐵) ∈ 𝐶))
11 inss2 4259 . . . . 5 (𝐴𝐵) ⊆ 𝐵
12 ordtr2 6439 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐵𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
1311, 12mpani 695 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐵𝐶 → (𝐴𝐵) ∈ 𝐶))
1410, 13jaod 858 . . 3 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
157, 14stoic3 1774 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
166, 15impbid 212 1 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator