![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelinel | Structured version Visualization version GIF version |
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordelinel | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or3 6036 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) | |
2 | 1 | 3adant3 1163 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) |
3 | eleq1a 2871 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 = (𝐴 ∩ 𝐵) → 𝐴 ∈ 𝐶)) | |
4 | eleq1a 2871 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐵 = (𝐴 ∩ 𝐵) → 𝐵 ∈ 𝐶)) | |
5 | 3, 4 | orim12d 988 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → ((𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵)) → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
6 | 2, 5 | syl5com 31 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
7 | ordin 5969 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
8 | inss1 4026 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
9 | ordtr2 5983 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
10 | 8, 9 | mpani 688 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐴 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
11 | inss2 4027 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
12 | ordtr2 5983 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
13 | 11, 12 | mpani 688 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
14 | 10, 13 | jaod 886 | . . 3 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
15 | 7, 14 | stoic3 1872 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
16 | 6, 15 | impbid 204 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∩ cin 3766 ⊆ wss 3767 Ord word 5938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-tr 4944 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-ord 5942 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |