MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Structured version   Visualization version   GIF version

Theorem ordelinel 6283
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordelinel ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 6282 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
213adant3 1128 . . 3 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
3 eleq1a 2908 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐴 = (𝐴𝐵) → 𝐴𝐶))
4 eleq1a 2908 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐵 = (𝐴𝐵) → 𝐵𝐶))
53, 4orim12d 961 . . 3 ((𝐴𝐵) ∈ 𝐶 → ((𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)) → (𝐴𝐶𝐵𝐶)))
62, 5syl5com 31 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 → (𝐴𝐶𝐵𝐶)))
7 ordin 6215 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
8 inss1 4204 . . . . 5 (𝐴𝐵) ⊆ 𝐴
9 ordtr2 6229 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐴𝐴𝐶) → (𝐴𝐵) ∈ 𝐶))
108, 9mpani 694 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐴𝐶 → (𝐴𝐵) ∈ 𝐶))
11 inss2 4205 . . . . 5 (𝐴𝐵) ⊆ 𝐵
12 ordtr2 6229 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐵𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
1311, 12mpani 694 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐵𝐶 → (𝐴𝐵) ∈ 𝐶))
1410, 13jaod 855 . . 3 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
157, 14stoic3 1773 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
166, 15impbid 214 1 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  cin 3934  wss 3935  Ord word 6184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-ord 6188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator