![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelinel | Structured version Visualization version GIF version |
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordelinel | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or3 6495 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) | |
2 | 1 | 3adant3 1132 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) |
3 | eleq1a 2839 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 = (𝐴 ∩ 𝐵) → 𝐴 ∈ 𝐶)) | |
4 | eleq1a 2839 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐵 = (𝐴 ∩ 𝐵) → 𝐵 ∈ 𝐶)) | |
5 | 3, 4 | orim12d 965 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → ((𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵)) → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
6 | 2, 5 | syl5com 31 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
7 | ordin 6425 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
8 | inss1 4258 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
9 | ordtr2 6439 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
10 | 8, 9 | mpani 695 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐴 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
11 | inss2 4259 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
12 | ordtr2 6439 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
13 | 11, 12 | mpani 695 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
14 | 10, 13 | jaod 858 | . . 3 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
15 | 7, 14 | stoic3 1774 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
16 | 6, 15 | impbid 212 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |